Abstract:In the realm of parameter-efficient fine-tuning (PEFT) methods, while options like LoRA are available, there is a persistent demand in the industry for a PEFT approach that excels in both efficiency and performance within the context of single-backbone multi-tenant applications. This paper introduces a new and straightforward PEFT technique, termed \underline{P}rompt \underline{A}ware \underline{R}epresentation \underline{A}djustment (PARA). The core of our proposal is to integrate a lightweight vector generator within each Transformer layer. This generator produces vectors that are responsive to input prompts, thereby adjusting the hidden representations accordingly. Our extensive experimentation across diverse tasks has yielded promising results. Firstly, the PARA method has been shown to surpass current PEFT benchmarks in terms of performance, despite having a similar number of adjustable parameters. Secondly, it has proven to be more efficient than LoRA in the single-backbone multi-tenant scenario, highlighting its significant potential for industrial adoption.
Abstract:Novelty evaluation is vital for the promotion and management of innovation. With the advancement of information techniques and the open data movement, some progress has been made in novelty measurements. Tracking and reviewing novelty measures provides a data-driven way to assess contributions, progress, and emerging directions in the science field. As academic papers serve as the primary medium for the dissemination, validation, and discussion of scientific knowledge, this review aims to offer a systematic analysis of novelty measurements for scientific papers. We began by comparing the differences between scientific novelty and four similar concepts, including originality, scientific innovation, creativity, and scientific breakthrough. Next, we reviewed the types of scientific novelty. Then, we classified existing novelty measures according to data types and reviewed the measures for each type. Subsequently, we surveyed the approaches employed in validating novelty measures and examined the current tools and datasets associated with these measures. Finally, we proposed several open issues for future studies.
Abstract:Large language models (LLMs) are widely used in real-world applications, raising concerns about their safety and trustworthiness. While red-teaming with jailbreak prompts exposes the vulnerabilities of LLMs, current efforts focus primarily on single-turn attacks, overlooking the multi-turn strategies used by real-world adversaries. Existing multi-turn methods rely on static patterns or predefined logical chains, failing to account for the dynamic strategies during attacks. We propose Siren, a learning-based multi-turn attack framework designed to simulate real-world human jailbreak behaviors. Siren consists of three stages: (1) training set construction utilizing Turn-Level LLM feedback (Turn-MF), (2) post-training attackers with supervised fine-tuning (SFT) and direct preference optimization (DPO), and (3) interactions between the attacking and target LLMs. Experiments demonstrate that Siren achieves an attack success rate (ASR) of 90% with LLaMA-3-8B as the attacker against Gemini-1.5-Pro as the target model, and 70% with Mistral-7B against GPT-4o, significantly outperforming single-turn baselines. Moreover, Siren with a 7B-scale model achieves performance comparable to a multi-turn baseline that leverages GPT-4o as the attacker, while requiring fewer turns and employing decomposition strategies that are better semantically aligned with attack goals. We hope Siren inspires the development of stronger defenses against advanced multi-turn jailbreak attacks under realistic scenarios. Code is available at https://github.com/YiyiyiZhao/siren. Warning: This paper contains potentially harmful text.
Abstract:The increasing transition of human-robot interaction (HRI) context from controlled settings to dynamic, real-world public environments calls for enhanced adaptability in robotic systems. This can go beyond algorithmic navigation or traditional HRI strategies in structured settings, requiring the ability to navigate complex public urban systems containing multifaceted dynamics and various socio-technical needs. Therefore, our proposed workshop seeks to extend the boundaries of adaptive HRI research beyond predictable, semi-structured contexts and highlight opportunities for adaptable robot interactions in urban public environments. This half-day workshop aims to explore design opportunities and challenges in creating contextually-adaptive HRI within these spaces and establish a network of interested parties within the OzCHI research community. By fostering ongoing discussions, sharing of insights, and collaborations, we aim to catalyse future research that empowers robots to navigate the inherent uncertainties and complexities of real-world public interactions.
Abstract:As the application of large language models in various fields continues to expand, materials science also ushers in opportunities for AI-driven innovation. The traditional way of relying on manual search for materials science-related information is now using artificial intelligence technology as an auxiliary tool to improve the efficiency of materials science research. To accelerate researchers' knowledge acquisition and intelligent decision-making support in materials science research, this paper proposes a large language model Polymetis model for a variety of materials fields, aiming to provide highly professional knowledge answers in the field of materials, covering energy materials, functional materials, alloy materials, physical chemistry, biology, and other material directions. The model uses a dataset of about 2 million material knowledge instructions, and in the process of building the dataset, we developed the Intelligent Extraction Large Model (IELM), which is specially used to extract and form structured knowledge from scientific texts, avoiding a large number of costs that need to be manually annotated, and improving efficiency. We inject this data into the GLM4-9B model for learning to enhance its inference capabilities in a variety of material domains. In addition, we have introduced enhanced prompt strategies to ensure that the answers to the model are more organized and comprehensive, providing efficient and comprehensive intelligent support for the diverse needs of materials science exploration, and promoting the development of material science.
Abstract:Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods. However, they introduce significant latency in multi-tenant settings due to the LoRA modules and MOE routers added to multiple linear modules in the Transformer layer. To address this issue, we propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant. MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism. This mechanism calculates expert routing results once before generating the first new token and reuses these results for subsequent tokens, reducing latency. Extensive experiments and analysis on commonsense reasoning tasks, math reasoning tasks, and widely used LLM evaluation benchmarks demonstrate that MiLoRA consistently outperforms strong PEFT baselines with comparable tunable parameter budgets. Additionally, MiLoRA significantly reduces latency in multi-tenant settings compared to previous LoRA-based methods.
Abstract:Large language models (LLMs) are widely used, but concerns about data contamination challenge the reliability of LLM evaluations. Existing contamination detection methods are often task-specific or require extra prerequisites, limiting practicality. We propose a novel framework, Consistency Amplification-based Data Contamination Detection (CAP), which introduces the Performance Consistency Ratio (PCR) to measure dataset leakage by leveraging LM consistency. To the best of our knowledge, this is the first method to explicitly differentiate between fine-tuning and contamination, which is crucial for detecting contamination in domain-specific models. Additionally, CAP is applicable to various benchmarks and works for both white-box and black-box models. We validate CAP's effectiveness through experiments on seven LLMs and four domain-specific benchmarks. Our findings also show that composite benchmarks from various dataset sources are particularly prone to unintentional contamination. Codes will be publicly available soon.
Abstract:Passively cooled base stations (PCBSs) have emerged to deliver better cost and energy efficiency. However, passive cooling necessitates intelligent thermal control via traffic management, i.e., the instantaneous data traffic or throughput of a PCBS directly impacts its thermal performance. This is particularly challenging for outdoor deployment of PCBSs because the heat dissipation efficiency is uncertain and fluctuates over time. What is more, the PCBSs are interference-coupled in multi-cell scenarios. Thus, a higher-throughput PCBS leads to higher interference to the other PCBSs, which, in turn, would require more resource consumption to meet their respective throughput targets. In this paper, we address online decision-making for maximizing the total downlink throughput for a multi-PCBS system subject to constraints related on operating temperature. We demonstrate that a reinforcement learning (RL) approach, specifically soft actor-critic (SAC), can successfully perform throughput maximization while keeping the PCBSs cool, by adapting the throughput to time-varying heat dissipation conditions. Furthermore, we design a denial and reward mechanism that effectively mitigates the risk of overheating during the exploration phase of RL. Simulation results show that our approach achieves up to 88.6% of the global optimum. This is very promising, as our approach operates without prior knowledge of future heat dissipation efficiency, which is required by the global optimum.
Abstract:Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.
Abstract:Due to their substantial sizes, large language models (LLMs) are typically deployed within a single-backbone multi-tenant framework. In this setup, a single instance of an LLM backbone must cater to multiple users or tasks through the application of various parameter-efficient fine-tuning (PEFT) models. Despite the availability of numerous effective PEFT techniques such as LoRA, there remains a need for a PEFT approach that achieves both high efficiency during inference and competitive performance on downstream tasks. In this research, we introduce a new and straightforward PEFT methodology named \underline{P}rompt D\underline{E}pen\underline{D}ent \underline{R}epresentation M\underline{O}dification (PEDRO). The proposed method involves integrating a lightweight vector generator into each Transformer layer, which generates vectors contingent upon the input prompts. These vectors then modify the hidden representations created by the LLM through a dot product operation, thereby influencing the semantic output and generated content of the model. Extensive experimentation across a variety of tasks indicates that: (a) PEDRO surpasses recent PEFT benchmarks when using a similar number of tunable parameters. (b) Under the single-backbone multi-tenant deployment model, PEDRO exhibits superior efficiency compared to LoRA, indicating significant industrial potential.