Abstract:We introduce Seed-Music, a suite of music generation systems capable of producing high-quality music with fine-grained style control. Our unified framework leverages both auto-regressive language modeling and diffusion approaches to support two key music creation workflows: \textit{controlled music generation} and \textit{post-production editing}. For controlled music generation, our system enables vocal music generation with performance controls from multi-modal inputs, including style descriptions, audio references, musical scores, and voice prompts. For post-production editing, it offers interactive tools for editing lyrics and vocal melodies directly in the generated audio. We encourage readers to listen to demo audio examples at https://team.doubao.com/seed-music .
Abstract:Differentiable Wavetable Synthesis (DWTS) is a technique for neural audio synthesis which learns a dictionary of one-period waveforms i.e. wavetables, through end-to-end training. We achieve high-fidelity audio synthesis with as little as 10 to 20 wavetables and demonstrate how a data-driven dictionary of waveforms opens up unprecedented one-shot learning paradigms on short audio clips. Notably, we show audio manipulations, such as high quality pitch-shifting, using only a few seconds of input audio. Lastly, we investigate performance gains from using learned wavetables for realtime and interactive audio synthesis.
Abstract:Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.
Abstract:We present Neural Wavetable, a proof-of-concept wavetable synthesizer that uses neural networks to generate playable wavetables. The system can produce new, distinct waveforms through the interpolation of traditional wavetables in an autoencoder's latent space. It is available as a VST/AU plugin for use in a Digital Audio Workstation.