the State Key Lab of Intelligent Control and Decision of Complex Systems and the School of Automation, Beijing Institute of Technology, Beijing, China, Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
Abstract:All-in-one image restoration has emerged as a practical and promising low-level vision task for real-world applications. In this context, the key issue lies in how to deal with different types of degraded images simultaneously. In this work, we present a Degradation-Aware Residual-Conditioned Optimal Transport (DA-RCOT) approach that models (all-in-one) image restoration as an optimal transport (OT) problem for unpaired and paired settings, introducing the transport residual as a degradation-specific cue for both the transport cost and the transport map. Specifically, we formalize image restoration with a residual-guided OT objective by exploiting the degradation-specific patterns of the Fourier residual in the transport cost. More crucially, we design the transport map for restoration as a two-pass DA-RCOT map, in which the transport residual is computed in the first pass and then encoded as multi-scale residual embeddings to condition the second-pass restoration. This conditioning process injects intrinsic degradation knowledge (e.g., degradation type and level) and structural information from the multi-scale residual embeddings into the OT map, which thereby can dynamically adjust its behaviors for all-in-one restoration. Extensive experiments across five degradations demonstrate the favorable performance of DA-RCOT as compared to state-of-the-art methods, in terms of distortion measures, perceptual quality, and image structure preservation. Notably, DA-RCOT delivers superior adaptability to real-world scenarios even with multiple degradations and shows distinctive robustness to both degradation levels and the number of degradations.
Abstract:The cooperative driving technology of Connected and Autonomous Vehicles (CAVs) is crucial for improving the efficiency and safety of transportation systems. Learning-based methods, such as Multi-Agent Reinforcement Learning (MARL), have demonstrated strong capabilities in cooperative decision-making tasks. However, existing MARL approaches still face challenges in terms of learning efficiency and performance. In recent years, Large Language Models (LLMs) have rapidly advanced and shown remarkable abilities in various sequential decision-making tasks. To enhance the learning capabilities of cooperative agents while ensuring decision-making efficiency and cost-effectiveness, we propose LDPD, a language-driven policy distillation method for guiding MARL exploration. In this framework, a teacher agent based on LLM trains smaller student agents to achieve cooperative decision-making through its own decision-making demonstrations. The teacher agent enhances the observation information of CAVs and utilizes LLMs to perform complex cooperative decision-making reasoning, which also leverages carefully designed decision-making tools to achieve expert-level decisions, providing high-quality teaching experiences. The student agent then refines the teacher's prior knowledge into its own model through gradient policy updates. The experiments demonstrate that the students can rapidly improve their capabilities with minimal guidance from the teacher and eventually surpass the teacher's performance. Extensive experiments show that our approach demonstrates better performance and learning efficiency compared to baseline methods.
Abstract:This review paper explores recent advances in deep learning approaches for non-invasive cognitive impairment detection. We examine various non-invasive indicators of cognitive decline, including speech and language, facial, and motoric mobility. The paper provides an overview of relevant datasets, feature-extracting techniques, and deep-learning architectures applied to this domain. We have analyzed the performance of different methods across modalities and observed that speech and language-based methods generally achieved the highest detection performance. Studies combining acoustic and linguistic features tended to outperform those using a single modality. Facial analysis methods showed promise for visual modalities but were less extensively studied. Most papers focused on binary classification (impaired vs. non-impaired), with fewer addressing multi-class or regression tasks. Transfer learning and pre-trained language models emerged as popular and effective techniques, especially for linguistic analysis. Despite significant progress, several challenges remain, including data standardization and accessibility, model explainability, longitudinal analysis limitations, and clinical adaptation. Lastly, we propose future research directions, such as investigating language-agnostic speech analysis methods, developing multi-modal diagnostic systems, and addressing ethical considerations in AI-assisted healthcare. By synthesizing current trends and identifying key obstacles, this review aims to guide further development of deep learning-based cognitive impairment detection systems to improve early diagnosis and ultimately patient outcomes.
Abstract:The development of autonomous vehicles has shown great potential to enhance the efficiency and safety of transportation systems. However, the decision-making issue in complex human-machine mixed traffic scenarios, such as unsignalized intersections, remains a challenge for autonomous vehicles. While reinforcement learning (RL) has been used to solve complex decision-making problems, existing RL methods still have limitations in dealing with cooperative decision-making of multiple connected autonomous vehicles (CAVs), ensuring safety during exploration, and simulating realistic human driver behaviors. In this paper, a novel and efficient algorithm, Multi-Agent Game-prior Attention Deep Deterministic Policy Gradient (MA-GA-DDPG), is proposed to address these limitations. Our proposed algorithm formulates the decision-making problem of CAVs at unsignalized intersections as a decentralized multi-agent reinforcement learning problem and incorporates an attention mechanism to capture interaction dependencies between ego CAV and other agents. The attention weights between the ego vehicle and other agents are then used to screen interaction objects and obtain prior hierarchical game relations, based on which a safety inspector module is designed to improve the traffic safety. Furthermore, both simulation and hardware-in-the-loop experiments were conducted, demonstrating that our method outperforms other baseline approaches in terms of driving safety, efficiency, and comfort.
Abstract:The rapid advancement in point cloud processing technologies has significantly increased the demand for efficient and compact models that achieve high-accuracy classification. Knowledge distillation has emerged as a potent model compression technique. However, traditional KD often requires extensive computational resources for forward inference of large teacher models, thereby reducing training efficiency for student models and increasing resource demands. To address these challenges, we introduce an innovative offline recording strategy that avoids the simultaneous loading of both teacher and student models, thereby reducing hardware demands. This approach feeds a multitude of augmented samples into the teacher model, recording both the data augmentation parameters and the corresponding logit outputs. By applying shape-level augmentation operations such as random scaling and translation, while excluding point-level operations like random jittering, the size of the records is significantly reduced. Additionally, to mitigate the issue of small student model over-imitating the teacher model's outputs and converging to suboptimal solutions, we incorporate a negative-weight self-distillation strategy. Experimental results demonstrate that the proposed distillation strategy enables the student model to achieve performance comparable to state-of-the-art models while maintaining lower parameter count. This approach strikes an optimal balance between performance and complexity. This study highlights the potential of our method to optimize knowledge distillation for point cloud classification tasks, particularly in resource-constrained environments, providing a novel solution for efficient point cloud analysis.
Abstract:This study addresses the computational inefficiencies in point cloud classification by introducing novel MLP-based architectures inspired by recent advances in CNN optimization. Traditional neural networks heavily rely on multiplication operations, which are computationally expensive. To tackle this, we propose Add-MLP and Shift-MLP, which replace multiplications with addition and shift operations, respectively, significantly enhancing computational efficiency. Building on this, we introduce SA-MLP, a hybrid model that intermixes alternately distributed shift and adder layers to replace MLP layers, maintaining the original number of layers without freezing shift layer weights. This design contrasts with the ShiftAddNet model from previous literature, which replaces convolutional layers with shift and adder layers, leading to a doubling of the number of layers and limited representational capacity due to frozen shift weights. Moreover, SA-MLP optimizes learning by setting distinct learning rates and optimizers specifically for the adder and shift layers, fully leveraging their complementary strengths. Extensive experiments demonstrate that while Add-MLP and Shift-MLP achieve competitive performance, SA-MLP significantly surpasses the multiplication-based baseline MLP model and achieves performance comparable to state-of-the-art MLP-based models. This study offers an efficient and effective solution for point cloud classification, balancing performance with computational efficiency.
Abstract:Advances in self-supervised learning are essential for enhancing feature extraction and understanding in point cloud processing. This paper introduces PMT-MAE (Point MLP-Transformer Masked Autoencoder), a novel self-supervised learning framework for point cloud classification. PMT-MAE features a dual-branch architecture that integrates Transformer and MLP components to capture rich features. The Transformer branch leverages global self-attention for intricate feature interactions, while the parallel MLP branch processes tokens through shared fully connected layers, offering a complementary feature transformation pathway. A fusion mechanism then combines these features, enhancing the model's capacity to learn comprehensive 3D representations. Guided by the sophisticated teacher model Point-M2AE, PMT-MAE employs a distillation strategy that includes feature distillation during pre-training and logit distillation during fine-tuning, ensuring effective knowledge transfer. On the ModelNet40 classification task, achieving an accuracy of 93.6\% without employing voting strategy, PMT-MAE surpasses the baseline Point-MAE (93.2\%) and the teacher Point-M2AE (93.4\%), underscoring its ability to learn discriminative 3D point cloud representations. Additionally, this framework demonstrates high efficiency, requiring only 40 epochs for both pre-training and fine-tuning. PMT-MAE's effectiveness and efficiency render it well-suited for scenarios with limited computational resources, positioning it as a promising solution for practical point cloud analysis.
Abstract:The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing problem that has not yet been sufficiently studied is the joint estimation and prediction of city-wide delivery demand. To this end, we formulate this problem as a graph-based spatiotemporal learning task. First, a message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models, we extract general geospatial knowledge encodings from the unstructured locational data and integrate them into the demand predictor. Last, to encourage the cross-city transferability of the model, an inductive training scheme is developed in an end-to-end routine. Extensive empirical results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in these challenging tasks.
Abstract:Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks. However, its performance significantly deteriorates when directly applied to medical domain, due to the remarkable differences between natural images and medical images. Some researchers have attempted to train SAM on large scale medical datasets. However, poor zero-shot performance is observed from the experimental results. In this context, inspired by the superior performance of U-Net-like models in medical image segmentation, we propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions. To be specific, we parallel a convolutional branch in the image encoder, which is trained independently with the vision Transformer branch frozen. Additionally, we employ multi-scale fusion in the mask decoder, to facilitate accurate segmentation of objects with different scales. We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images. Extensive experiments are conducted to evaluate the performance of the model, and state-of-the-art result is achieved, with a dice similarity coefficient score of 0.883 on SA-Med2D-16M dataset. Specifically, in zero-shot segmentation experiments, our model not only significantly outperforms previous large medical SAM models across all modalities, but also substantially mitigates the performance degradation seen on unseen modalities. It should be highlighted that SAM-UNet is an efficient and extensible foundation model, which can be further fine-tuned for other downstream tasks in medical community. The code is available at https://github.com/Hhankyangg/sam-unet.
Abstract:Vehicle-to-Vehicle (V2V) technologies have great potential for enhancing traffic flow efficiency and safety. However, cooperative decision-making in multi-agent systems, particularly in complex human-machine mixed merging areas, remains challenging for connected and autonomous vehicles (CAVs). Intent sharing, a key aspect of human coordination, may offer an effective solution to these decision-making problems, but its application in CAVs is under-explored. This paper presents an intent-sharing-based cooperative method, the Multi-Agent Proximal Policy Optimization with Prior Intent Sharing (MAPPO-PIS), which models the CAV cooperative decision-making problem as a Multi-Agent Reinforcement Learning (MARL) problem. It involves training and updating the agents' policies through the integration of two key modules: the Intention Generator Module (IGM) and the Safety Enhanced Module (SEM). The IGM is specifically crafted to generate and disseminate CAVs' intended trajectories spanning multiple future time-steps. On the other hand, the SEM serves a crucial role in assessing the safety of the decisions made and rectifying them if necessary. Merging area with human-machine mixed traffic flow is selected to validate our method. Results show that MAPPO-PIS significantly improves decision-making performance in multi-agent systems, surpassing state-of-the-art baselines in safety, efficiency, and overall traffic system performance. The code and video demo can be found at: \url{https://github.com/CCCC1dhcgd/A-MAPPO-PIS}.