Abstract:Dense video captioning aims to detect and describe all events in untrimmed videos. This paper presents a dense video captioning network called Multi-Concept Cyclic Learning (MCCL), which aims to: (1) detect multiple concepts at the frame level, using these concepts to enhance video features and provide temporal event cues; and (2) design cyclic co-learning between the generator and the localizer within the captioning network to promote semantic perception and event localization. Specifically, we perform weakly supervised concept detection for each frame, and the detected concept embeddings are integrated into the video features to provide event cues. Additionally, video-level concept contrastive learning is introduced to obtain more discriminative concept embeddings. In the captioning network, we establish a cyclic co-learning strategy where the generator guides the localizer for event localization through semantic matching, while the localizer enhances the generator's event semantic perception through location matching, making semantic perception and event localization mutually beneficial. MCCL achieves state-of-the-art performance on the ActivityNet Captions and YouCook2 datasets. Extensive experiments demonstrate its effectiveness and interpretability.
Abstract:The success of Multimodal Large Language Models (MLLMs) in the image domain has garnered wide attention from the research community. Drawing on previous successful experiences, researchers have recently explored extending the success to the video understanding realms. Apart from training from scratch, an efficient way is to utilize the pre-trained image-LLMs, leading to two mainstream approaches, i.e. zero-shot inference and further fine-tuning with video data. In this work, our study of these approaches harvests an effective data augmentation method. We first make a deeper inspection of the zero-shot inference way and identify two limitations, i.e. limited generalization and lack of temporal understanding capabilities. Thus, we further investigate the fine-tuning approach and find a low learning efficiency when simply using all the video data samples, which can be attributed to a lack of instruction diversity. Aiming at this issue, we develop a method called T2Vid to synthesize video-like samples to enrich the instruction diversity in the training corpus. Integrating these data enables a simple and efficient training scheme, which achieves performance comparable to or even superior to using full video datasets by training with just 15% the sample size. Meanwhile, we find that the proposed scheme can boost the performance of long video understanding without training with long video samples. We hope our study will spark more thinking about using MLLMs for video understanding and curation of high-quality data. The code is released at https://github.com/xjtupanda/T2Vid.
Abstract:Human action recognition (HAR) plays a key role in various applications such as video analysis, surveillance, autonomous driving, robotics, and healthcare. Most HAR algorithms are developed from RGB images, which capture detailed visual information. However, these algorithms raise concerns in privacy-sensitive environments due to the recording of identifiable features. Event cameras offer a promising solution by capturing scene brightness changes sparsely at the pixel level, without capturing full images. Moreover, event cameras have high dynamic ranges that can effectively handle scenarios with complex lighting conditions, such as low light or high contrast environments. However, using event cameras introduces challenges in modeling the spatially sparse and high temporal resolution event data for HAR. To address these issues, we propose the SpikMamba framework, which combines the energy efficiency of spiking neural networks and the long sequence modeling capability of Mamba to efficiently capture global features from spatially sparse and high a temporal resolution event data. Additionally, to improve the locality of modeling, a spiking window-based linear attention mechanism is used. Extensive experiments show that SpikMamba achieves remarkable recognition performance, surpassing the previous state-of-the-art by 1.45%, 7.22%, 0.15%, and 3.92% on the PAF, HARDVS, DVS128, and E-FAction datasets, respectively. The code is available at https://github.com/Typistchen/SpikMamba.
Abstract:Image dehazing has drawn a significant attention in recent years. Learning-based methods usually require paired hazy and corresponding ground truth (haze-free) images for training. However, it is difficult to collect real-world image pairs, which prevents developments of existing methods. Although several works partially alleviate this issue by using synthetic datasets or small-scale real datasets. The haze intensity distribution bias and scene homogeneity in existing datasets limit the generalization ability of these methods, particularly when encountering images with previously unseen haze intensities. In this work, we present LMHaze, a large-scale, high-quality real-world dataset. LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments, spanning multiple scenarios and haze intensities. It contains over 5K high-resolution image pairs, surpassing the size of the biggest existing real-world dehazing dataset by over 25 times. Meanwhile, to better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba (MoE-Mamba) for dehazing, which dynamically adjusts the model parameters according to the haze intensity. Moreover, with our proposed dataset, we conduct a new large multimodal model (LMM)-based benchmark study to simulate human perception for evaluating dehazed images. Experiments demonstrate that LMHaze dataset improves the dehazing performance in real scenarios and our dehazing method provides better results compared to state-of-the-art methods.
Abstract:Fine-grained video action recognition can be conceptualized as a video-text matching problem. Previous approaches often rely on global video semantics to consolidate video embeddings, which can lead to misalignment in video-text pairs due to a lack of understanding of action semantics at an atomic granularity level. To tackle this challenge, we propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics. Inspired by the concept of storyboarding, which disassembles a script into individual shots, we enhance global video semantics by generating fine-grained descriptions using a pre-trained large language model. These detailed descriptions capture common atomic actions depicted in videos. A filtering metric is proposed to select the descriptions that correspond to the atomic actions present in both the videos and the descriptions. By employing global semantics and fine-grained descriptions, we can identify key frames in videos and utilize them to aggregate embeddings, thereby making the embedding more accurate. Extensive experiments on various video action recognition datasets demonstrate superior performance of our proposed method in supervised, few-shot, and zero-shot settings.
Abstract:This paper studies zero-shot object recognition using event camera data. Guided by CLIP, which is pre-trained on RGB images, existing approaches achieve zero-shot object recognition by maximizing embedding similarities between event data encoded by an event encoder and RGB images encoded by the CLIP image encoder. Alternatively, several methods learn RGB frame reconstructions from event data for the CLIP image encoder. However, these approaches often result in suboptimal zero-shot performance. This study develops an event encoder without relying on additional reconstruction networks. We theoretically analyze the performance bottlenecks of previous approaches: global similarity-based objective (i.e., maximizing the embedding similarities) cause semantic misalignments between the learned event embedding space and the CLIP text embedding space due to the degree of freedom. To mitigate the issue, we explore a scalar-wise regularization strategy. Furthermore, to scale up the number of events and RGB data pairs for training, we also propose a pipeline for synthesizing event data from static RGB images. Experimentally, our data synthesis strategy exhibits an attractive scaling property, and our method achieves superior zero-shot object recognition performance on extensive standard benchmark datasets, even compared with past supervised learning approaches. For example, we achieve 47.84% zero-shot accuracy on the N-ImageNet dataset.
Abstract:The widespread applications of large language models (LLMs) have brought about concerns regarding their potential misuse. Although aligned with human preference data before release, LLMs remain vulnerable to various malicious attacks. In this paper, we adopt a red-teaming strategy to enhance LLM safety and introduce SoP, a simple yet effective framework to design jailbreak prompts automatically. Inspired by the social facilitation concept, SoP generates and optimizes multiple jailbreak characters to bypass the guardrails of the target LLM. Different from previous work which relies on proprietary LLMs or seed jailbreak templates crafted by human expertise, SoP can generate and optimize the jailbreak prompt in a cold-start scenario using open-sourced LLMs without any seed jailbreak templates. Experimental results show that SoP achieves attack success rates of 88% and 60% in bypassing the safety alignment of GPT-3.5-1106 and GPT-4, respectively. Furthermore, we extensively evaluate the transferability of the generated templates across different LLMs and held-out malicious requests, while also exploring defense strategies against the jailbreak attack designed by SoP. Code is available at https://github.com/Yang-Yan-Yang-Yan/SoP.
Abstract:Dialogue state tracking (DST) is evaluated by exact matching methods, which rely on large amounts of labeled data and ignore semantic consistency, leading to over-evaluation. Currently, leveraging large language models (LLM) in evaluating natural language processing tasks has achieved promising results. However, using LLM for DST evaluation is still under explored. In this paper, we propose a two-dimensional zero-shot evaluation method for DST using GPT-4, which divides the evaluation into two dimensions: accuracy and completeness. Furthermore, we also design two manual reasoning paths in prompting to further improve the accuracy of evaluation. Experimental results show that our method achieves better performance compared to the baselines, and is consistent with traditional exact matching based methods.
Abstract:Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model's capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ.
Abstract:Bilevel reinforcement learning (RL), which features intertwined two-level problems, has attracted growing interest recently. The inherent non-convexity of the lower-level RL problem is, however, to be an impediment to developing bilevel optimization methods. By employing the fixed point equation associated with the regularized RL, we characterize the hyper-gradient via fully first-order information, thus circumventing the assumption of lower-level convexity. This, remarkably, distinguishes our development of hyper-gradient from the general AID-based bilevel frameworks since we take advantage of the specific structure of RL problems. Moreover, we propose both model-based and model-free bilevel reinforcement learning algorithms, facilitated by access to the fully first-order hyper-gradient. Both algorithms are provable to enjoy the convergence rate $\mathcal{O}(\epsilon^{-1})$. To the best of our knowledge, this is the first time that AID-based bilevel RL gets rid of additional assumptions on the lower-level problem. In addition, numerical experiments demonstrate that the hyper-gradient indeed serves as an integration of exploitation and exploration.