Abstract:Tree canopy height is one of the most important indicators of forest biomass, productivity, and ecosystem structure, but it is challenging to measure accurately from the ground and from space. Here, we used a U-Net model adapted for regression to map the mean tree canopy height in the Amazon forest from Planet NICFI images at ~4.78 m spatial resolution for the period 2020-2024. The U-Net model was trained using canopy height models computed from aerial LiDAR data as a reference, along with their corresponding Planet NICFI images. Predictions of tree heights on the validation sample exhibited a mean error of 3.68 m and showed relatively low systematic bias across the entire range of tree heights present in the Amazon forest. Our model successfully estimated canopy heights up to 40-50 m without much saturation, outperforming existing canopy height products from global models in this region. We determined that the Amazon forest has an average canopy height of ~22 m. Events such as logging or deforestation could be detected from changes in tree height, and encouraging results were obtained to monitor the height of regenerating forests. These findings demonstrate the potential for large-scale mapping and monitoring of tree height for old and regenerating Amazon forests using Planet NICFI imagery.
Abstract:Monitoring changes in tree cover for rapid assessment of deforestation is considered the critical component of any climate mitigation policy for reducing carbon. Here, we map tropical tree cover and deforestation between 2015 and 2022 using 5 m spatial resolution Planet NICFI satellite images over the state of Mato Grosso (MT) in Brazil and a U-net deep learning model. The tree cover for the state was 556510.8 km$^2$ in 2015 (58.1 % of the MT State) and was reduced to 141598.5 km$^2$ (14.8 % of total area) at the end of 2021. After reaching a minimum deforested area in December 2016 with 6632.05 km$^2$, the bi-annual deforestation area only showed a slight increase between December 2016 and December 2019. A year after, the areas of deforestation almost doubled from 9944.5 km$^2$ in December 2019 to 19817.8 km$^2$ in December 2021. The high-resolution data product showed relatively consistent agreement with the official deforestation map from Brazil (67.2%) but deviated significantly from year of forest cover loss estimates from the Global Forest change (GFC) product, mainly due to large area of fire degradation observed in the GFC data. High-resolution imagery from Planet NICFI associated with deep learning technics can significantly improve mapping deforestation extent in tropics.