Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) is increasingly viewed as a tree pruning mechanism. However, we identify a systemic pathology termed Recursive Space Contraction (RSC), an irreversible collapse driven by the combined dynamics of positive sharpening and negative squeezing, where the sampling probability of valid alternatives vanishes. While Kullback-Leibler (KL) regularization aims to mitigate this, it imposes a rigid Shape Matching constraint that forces the policy to mimic the reference model's full density, creating a gradient conflict with the sharpening required for correctness. We propose Anchored Policy Optimization (APO), shifting the paradigm from global Shape Matching to Support Coverage. By defining a Safe Manifold based on the reference model's high-confidence support, APO permits aggressive sharpening for efficiency while selectively invoking a restorative force during error correction to prevent collapse. We theoretically derive that APO serves as a gradient-aligned mechanism to maximize support coverage, enabling an Elastic Recovery that re-inflates valid branches. Empirical evaluations on mathematical benchmarks demonstrate that APO breaks the accuracy-diversity trade-off, significantly improving Pass@1 while restoring the Pass@K diversity typically lost by standard policy gradient methods.
Abstract:Tool-using agents based on Large Language Models (LLMs) excel in tasks such as mathematical reasoning and multi-hop question answering. However, in long trajectories, agents often trigger excessive and low-quality tool calls, increasing latency and degrading inference performance, making managing tool-use behavior challenging. In this work, we conduct entropy-based pilot experiments and observe a strong positive correlation between entropy reduction and high-quality tool calls. Building on this finding, we propose using entropy reduction as a supervisory signal and design two reward strategies to address the differing needs of optimizing tool-use behavior. Sparse outcome rewards provide coarse, trajectory-level guidance to improve efficiency, while dense process rewards offer fine-grained supervision to enhance performance. Experiments across diverse domains show that both reward designs improve tool-use behavior: the former reduces tool calls by 72.07% compared to the average of baselines, while the latter improves performance by 22.27%. These results position entropy reduction as a key mechanism for enhancing tool-use behavior, enabling agents to be more adaptive in real-world applications.
Abstract:Large language models now solve many benchmark math problems at near-expert levels, yet this progress has not fully translated into reliable performance in real-world applications. We study this gap through contextual mathematical reasoning, where the mathematical core must be formulated from descriptive scenarios. We introduce ContextMATH, a benchmark that repurposes AIME and MATH-500 problems into two contextual settings: Scenario Grounding (SG), which embeds abstract problems into realistic narratives without increasing reasoning complexity, and Complexity Scaling (CS), which transforms explicit conditions into sub-problems to capture how constraints often appear in practice. Evaluating 61 proprietary and open-source models, we observe sharp drops: on average, open-source models decline by 13 and 34 points on SG and CS, while proprietary models drop by 13 and 20. Error analysis shows that errors are dominated by incorrect problem formulation, with formulation accuracy declining as original problem difficulty increases. Correct formulation emerges as a prerequisite for success, and its sufficiency improves with model scale, indicating that larger models advance in both understanding and reasoning. Nevertheless, formulation and reasoning remain two complementary bottlenecks that limit contextual mathematical problem solving. Finally, we find that fine-tuning with scenario data improves performance, whereas formulation-only training is ineffective. However, performance gaps are only partially alleviated, highlighting contextual mathematical reasoning as a central unsolved challenge for LLMs.
Abstract:Critique-guided reinforcement learning (RL) has emerged as a powerful paradigm for training LLM agents by augmenting sparse outcome rewards with natural-language feedback. However, current methods often rely on static or offline critic models, which fail to adapt as the policy evolves. In on-policy RL, the agent's error patterns shift over time, causing stationary critics to become stale and providing feedback of diminishing utility. To address this, we introduce ECHO (Evolving Critic for Hindsight-Guided Optimization)}, a framework that jointly optimizes the policy and critic through a synchronized co-evolutionary loop. ECHO utilizes a cascaded rollout mechanism where the critic generates multiple diagnoses for an initial trajectory, followed by policy refinement to enable group-structured advantage estimation. We address the challenge of learning plateaus via a saturation-aware gain shaping objective, which rewards the critic for inducing incremental improvements in high-performing trajectories. By employing dual-track GRPO updates, ECHO ensures the critic's feedback stays synchronized with the evolving policy. Experimental results show that ECHO yields more stable training and higher long-horizon task success across open-world environments.
Abstract:Agentic reinforcement learning increasingly relies on experience-driven scaling, yet real-world environments remain non-adaptive, limited in coverage, and difficult to scale. World models offer a potential way to improve learning efficiency through simulated experience, but it remains unclear whether large language models can reliably serve this role and under what conditions they meaningfully benefit agents. We study these questions in text-based environments, which provide a controlled setting to reinterpret language modeling as next-state prediction under interaction. We introduce a three-level framework for evaluating LLM-based world models: (i) fidelity and consistency, (ii) scalability and robustness, and (iii) agent utility. Across five representative environments, we find that sufficiently trained world models maintain coherent latent state, scale predictably with data and model size, and improve agent performance via action verification, synthetic trajectory generation, and warm-starting reinforcement learning. Meanwhile, these gains depend critically on behavioral coverage and environment complexity, delineating clear boundry on when world modeling effectively supports agent learning.
Abstract:Multimodal large language models (MLLMs) have significantly advanced the integration of visual and textual understanding. However, their ability to generate code from multimodal inputs remains limited. In this work, we introduce VisCodex, a unified framework that seamlessly merges vision and coding language models to empower MLLMs with strong multimodal code generation abilities. Leveraging a task vector-based model merging technique, we integrate a state-of-the-art coding LLM into a strong vision-language backbone, while preserving both visual comprehension and advanced coding skills. To support training and evaluation, we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse collection of 598k samples, including high-quality HTML code, chart image-code pairs, image-augmented StackOverflow QA, and algorithmic problems. Furthermore, we propose InfiBench-V, a novel and challenging benchmark specifically designed to assess models on visually-rich, real-world programming questions that demand a nuanced understanding of both textual and visual contexts. Extensive experiments show that VisCodex achieves state-of-the-art performance among open-source MLLMs and approaches proprietary models like GPT-4o, highlighting the effectiveness of our model merging strategy and new datasets.
Abstract:With the proliferation of task-specific large language models, delta compression has emerged as a method to mitigate the resource challenges of deploying numerous such models by effectively compressing the delta model parameters. Previous delta-sparsification methods either remove parameters randomly or truncate singular vectors directly after singular value decomposition (SVD). However, these methods either disregard parameter importance entirely or evaluate it with too coarse a granularity. In this work, we introduce ImPart, a novel importance-aware delta sparsification approach. Leveraging SVD, it dynamically adjusts sparsity ratios of different singular vectors based on their importance, effectively retaining crucial task-specific knowledge even at high sparsity ratios. Experiments show that ImPart achieves state-of-the-art delta sparsification performance, demonstrating $2\times$ higher compression ratio than baselines at the same performance level. When integrated with existing methods, ImPart sets a new state-of-the-art on delta quantization and model merging.




Abstract:Despite being pretrained on multilingual corpora, large language models (LLMs) exhibit suboptimal performance on low-resource languages. Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models. However, these methods typically focus on the encoder's output, overlooking valuable information from other layers. We propose \aname (\mname), a framework that integrates representations from all encoder layers, coupled with the \attaname mechanism to enable layer-wise interaction between the LLM and the multilingual encoder. Extensive experiments on multilingual reasoning tasks, along with analyses of learned representations, show that our approach consistently outperforms existing baselines.




Abstract:Out-of-distribution (OOD) detection is crucial for the safe deployment of neural networks. Existing CLIP-based approaches perform OOD detection by devising novel scoring functions or sophisticated fine-tuning methods. In this work, we propose SeTAR, a novel, training-free OOD detection method that leverages selective low-rank approximation of weight matrices in vision-language and vision-only models. SeTAR enhances OOD detection via post-hoc modification of the model's weight matrices using a simple greedy search algorithm. Based on SeTAR, we further propose SeTAR+FT, a fine-tuning extension optimizing model performance for OOD detection tasks. Extensive evaluations on ImageNet1K and Pascal-VOC benchmarks show SeTAR's superior performance, reducing the false positive rate by up to 18.95% and 36.80% compared to zero-shot and fine-tuning baselines. Ablation studies further validate our approach's effectiveness, robustness, and generalizability across different model backbones. Our work offers a scalable, efficient solution for OOD detection, setting a new state-of-the-art in this area.




Abstract:Efficient finetuning of large language models (LLMs) aims to adapt the LLMs with reduced computation and memory cost. Previous LoRA-based approaches initialize the low-rank matrices with gaussian distribution and zero values, while keeping the original weight matrices frozen. However, the trainable model parameters optimized in an unguided subspace might have interference with the well-learned subspace of the pretrained weight matrix. In this paper, we propose MiLoRA, a simple yet effective LLM finetuning approach that only updates the minor singular components of the weight matrix while keeping the principle singular components frozen. It is observed that the minor matrix corresponds to the noisy or long-tail information, while the principle matrix contains important knowledge. The MiLoRA initializes the low-rank matrices within a subspace that is orthogonal to the principle matrix, thus the pretrained knowledge is expected to be well preserved. During finetuning, MiLoRA makes the most use of the less-optimized subspace for learning the finetuning dataset. Extensive experiments on commonsense reasoning, math reasoning and instruction following benchmarks present the superior performance of our method.