Abstract:Instruction tuning has been demonstrated that could significantly improve the zero-shot generalization capability to unseen tasks by an apparent margin. By incorporating additional context (e.g., task definition, examples) during the fine-tuning process, Large Language Models (LLMs) achieved much higher performance than before. However, recent work reported that delusive task examples can achieve almost the same performance as correct task examples, indicating the input-label correspondence is less important than previously thought. Intrigued by this counter-intuitive observation, we suspect models have the same illusion of competence as humans. Therefore, we propose a novel method called TADIS that steers LLMs for "Deep-Thinking'' about demonstration examples instead of merely seeing. To alleviate the illusion of competence of models, we first ask the model to verify the correctness of shown examples. Then, using the verification results as conditions to elicit models for a better answer. Our experimental results show that TADIS consistently outperforms competitive baselines on in-domain and out-domain tasks (improving 2.79 and 4.03 average ROUGLE-L on out-domain and in-domain datasets, respectively). Despite the presence of generated examples (not all of the thinking labels are accurate), TADIS can notably enhance performance in zero-shot and few-shot settings. This also suggests that our approach can be adopted on a large scale to improve the instruction following capabilities of models without any manual labor. Moreover, we construct three types of thinking labels with different model sizes and find that small models learn from the format of TADIS but larger models can be steered for "Deep-Thinking''.
Abstract:Aligning large language models (LLMs) with human preferences is essential for safe and useful LLMs. Previous works mainly adopt reinforcement learning (RLHF) and direct preference optimization (DPO) with human feedback for alignment. Nevertheless, they have certain drawbacks. One such limitation is that they can only align models with one preference at the training time (e.g., they cannot learn to generate concise responses when the preference data prefers detailed responses), or have certain constraints for the data format (e.g., DPO only supports pairwise preference data). To this end, prior works incorporate controllable generations for alignment to make language models learn multiple preferences and provide outputs with different preferences during inference if asked. Controllable generation also offers more flexibility with regard to data format (e.g., it supports pointwise preference data). Specifically, it uses different control tokens for different preferences during training and inference, making LLMs behave differently when required. Current controllable generation methods either use a special token or hand-crafted prompts as control tokens, and optimize them together with LLMs. As control tokens are typically much lighter than LLMs, this optimization strategy may not effectively optimize control tokens. To this end, we first use parameter-efficient tuning (e.g., prompting tuning and low-rank adaptation) to optimize control tokens and then fine-tune models for controllable generations, similar to prior works. Our approach, alignMEnt with parameter-Efficient Tuning (MEET), improves the quality of control tokens, thus improving controllable generation quality consistently by an apparent margin on two well-recognized datasets compared with prior works.
Abstract:Large language Models (LLMs) have achieved promising performance on arithmetic reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting. However, LLMs face challenges in maintaining factual consistency during reasoning, exhibiting tendencies to condition overlooking, question misinterpretation, and condition hallucination over given problems. Existing methods use coarse-grained feedback (e.g., whether the answer is correct) to improve factual consistency. In this work, we propose RCoT (Reversing Chain-of-Thought), a novel method to improve LLMs' reasoning abilities by automatically detecting and rectifying factual inconsistency in LLMs' generated solutions. To detect factual inconsistency, RCoT first asks LLMs to reconstruct the problem based on generated solutions. Then fine-grained comparisons between the original problem and the reconstructed problem expose the factual inconsistency in the original solutions. To rectify the solution, RCoT formulates detected factual inconsistency into fine-grained feedback to guide LLMs in revising solutions. Experimental results demonstrate consistent improvements of RCoT over standard CoT across seven arithmetic datasets. Moreover, we find that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities (e.g., ChatGPT reaches 94.6% accuracy on GSM8K), encouraging the community to further explore the fine-grained feedback generation methods.