Ant Group
Abstract:Large vision-language models (VLMs) have demonstrated remarkable capabilities in open-world multimodal understanding, yet their high computational overheads pose great challenges for practical deployment. Some recent works have proposed methods to accelerate VLMs by pruning redundant visual tokens guided by the attention maps of VLM's early layers. Despite the success of these token pruning methods, they still suffer from two major shortcomings: (i) considerable accuracy drop due to insensitive attention signals in early layers, and (ii) limited speedup when generating long responses (e.g., 30 tokens). To address the limitations above, we present TwigVLM -- a simple and general architecture by growing a lightweight twig upon an early layer of the base VLM. Compared with most existing VLM acceleration methods purely based on visual token pruning, our TwigVLM not only achieves better accuracy retention by employing a twig-guided token pruning (TTP) strategy, but also yields higher generation speed by utilizing a self-speculative decoding (SSD) strategy. Taking LLaVA-1.5-7B as the base VLM, experimental results show that TwigVLM preserves 96% of the original performance after pruning 88.9% of visual tokens and achieves 154% speedup in generating long responses, delivering significantly better performance in terms of both accuracy and speed over the state-of-the-art VLM acceleration methods. Code will be made publicly available.
Abstract:In this paper, we introduce LDGen, a novel method for integrating large language models (LLMs) into existing text-to-image diffusion models while minimizing computational demands. Traditional text encoders, such as CLIP and T5, exhibit limitations in multilingual processing, hindering image generation across diverse languages. We address these challenges by leveraging the advanced capabilities of LLMs. Our approach employs a language representation strategy that applies hierarchical caption optimization and human instruction techniques to derive precise semantic information,. Subsequently, we incorporate a lightweight adapter and a cross-modal refiner to facilitate efficient feature alignment and interaction between LLMs and image features. LDGen reduces training time and enables zero-shot multilingual image generation. Experimental results indicate that our method surpasses baseline models in both prompt adherence and image aesthetic quality, while seamlessly supporting multiple languages. Project page: https://zrealli.github.io/LDGen.
Abstract:The rapid development of large language models (LLMs) is redefining the landscape of human-computer interaction, and their integration into various user-service applications is becoming increasingly prevalent. However, transmitting user data to cloud-based LLMs presents significant risks of data breaches and unauthorized access to personal identification information. In this paper, we propose a privacy preservation pipeline for protecting privacy and sensitive information during interactions between users and LLMs in practical LLM usage scenarios. We construct SensitiveQA, the first privacy open-ended question-answering dataset. It comprises 57k interactions in Chinese and English, encompassing a diverse range of user-sensitive information within the conversations. Our proposed solution employs a multi-stage strategy aimed at preemptively securing user information while simultaneously preserving the response quality of cloud-based LLMs. Experimental validation underscores our method's efficacy in balancing privacy protection with maintaining robust interaction quality. The code and dataset are available at https://github.com/ligw1998/PRIV-QA.
Abstract:The rapid advancement of large language models (LLMs) has significantly enhanced their reasoning abilities, enabling increasingly complex tasks. However, these capabilities often diminish in smaller, more computationally efficient models like GPT-2. Recent research shows that reasoning distillation can help small models acquire reasoning capabilities, but most existing methods focus primarily on improving teacher-generated reasoning paths. Our observations reveal that small models can generate high-quality reasoning paths during sampling, even without chain-of-thought prompting, though these paths are often latent due to their low probability under standard decoding strategies. To address this, we propose Self-Enhanced Reasoning Training (SERT), which activates and leverages latent reasoning capabilities in small models through self-training on filtered, self-generated reasoning paths under zero-shot conditions. Experiments using OpenAI's GPT-3.5 as the teacher model and GPT-2 models as the student models demonstrate that SERT enhances the reasoning abilities of small models, improving their performance in reasoning distillation.
Abstract:Malicious shell commands are linchpins to many cyber-attacks, but may not be easy to understand by security analysts due to complicated and often disguised code structures. Advances in large language models (LLMs) have unlocked the possibility of generating understandable explanations for shell commands. However, existing general-purpose LLMs suffer from a lack of expert knowledge and a tendency to hallucinate in the task of shell command explanation. In this paper, we present Raconteur, a knowledgeable, expressive and portable shell command explainer powered by LLM. Raconteur is infused with professional knowledge to provide comprehensive explanations on shell commands, including not only what the command does (i.e., behavior) but also why the command does it (i.e., purpose). To shed light on the high-level intent of the command, we also translate the natural-language-based explanation into standard technique & tactic defined by MITRE ATT&CK, the worldwide knowledge base of cybersecurity. To enable Raconteur to explain unseen private commands, we further develop a documentation retriever to obtain relevant information from complementary documentations to assist the explanation process. We have created a large-scale dataset for training and conducted extensive experiments to evaluate the capability of Raconteur in shell command explanation. The experiments verify that Raconteur is able to provide high-quality explanations and in-depth insight of the intent of the command.
Abstract:Non-autoregressive (NAR) automatic speech recognition (ASR) models predict tokens independently and simultaneously, bringing high inference speed. However, there is still a gap in the accuracy of the NAR models compared to the autoregressive (AR) models. To further narrow the gap between the NAR and AR models, we propose a single-step NAR ASR architecture with high accuracy and inference speed, called EfficientASR. It uses an Index Mapping Vector (IMV) based alignment generator to generate alignments during training, and an alignment predictor to learn the alignments for inference. It can be trained end-to-end (E2E) with cross-entropy loss combined with alignment loss. The proposed EfficientASR achieves competitive results on the AISHELL-1 and AISHELL-2 benchmarks compared to the state-of-the-art (SOTA) models. Specifically, it achieves character error rates (CER) of 4.26%/4.62% on the AISHELL-1 dev/test dataset, which outperforms the SOTA AR Conformer with about 30x inference speedup.
Abstract:Currently, sample-specific backdoor attacks (SSBAs) are the most advanced and malicious methods since they can easily circumvent most of the current backdoor defenses. In this paper, we reveal that SSBAs are not sufficiently stealthy due to their poisoned-label nature, where users can discover anomalies if they check the image-label relationship. In particular, we demonstrate that it is ineffective to directly generalize existing SSBAs to their clean-label variants by poisoning samples solely from the target class. We reveal that it is primarily due to two reasons, including \textbf{(1)} the `antagonistic effects' of ground-truth features and \textbf{(2)} the learning difficulty of sample-specific features. Accordingly, trigger-related features of existing SSBAs cannot be effectively learned under the clean-label setting due to their mild trigger intensity required for ensuring stealthiness. We argue that the intensity constraint of existing SSBAs is mostly because their trigger patterns are `content-irrelevant' and therefore act as `noises' for both humans and DNNs. Motivated by this understanding, we propose to exploit content-relevant features, $a.k.a.$ (human-relied) attributes, as the trigger patterns to design clean-label SSBAs. This new attack paradigm is dubbed backdoor attack with attribute trigger (BAAT). Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our BAAT and its resistance to existing defenses.
Abstract:Data augmentation is vital to the generalization ability and robustness of deep neural networks (DNNs) models. Existing augmentation methods for speaker verification manipulate the raw signal, which are time-consuming and the augmented samples lack diversity. In this paper, we present a novel difficulty-aware semantic augmentation (DASA) approach for speaker verification, which can generate diversified training samples in speaker embedding space with negligible extra computing cost. Firstly, we augment training samples by perturbing speaker embeddings along semantic directions, which are obtained from speaker-wise covariance matrices. Secondly, accurate covariance matrices are estimated from robust speaker embeddings during training, so we introduce difficultyaware additive margin softmax (DAAM-Softmax) to obtain optimal speaker embeddings. Finally, we assume the number of augmented samples goes to infinity and derive a closed-form upper bound of the expected loss with DASA, which achieves compatibility and efficiency. Extensive experiments demonstrate the proposed approach can achieve a remarkable performance improvement. The best result achieves a 14.6% relative reduction in EER metric on CN-Celeb evaluation set.
Abstract:Convolutional neural networks (ConvNets) have been successfully applied to satellite image scene classification. Human-labeled training datasets are essential for ConvNets to perform accurate classification. Errors in human-labeled training datasets are unavoidable due to the complexity of satellite images. However, the distribution of human labeling errors on satellite images and their impact on ConvNets have not been investigated. To fill this research gap, this study, for the first time, collected real-world labels from 32 participants and explored how their errors affect three ConvNets (VGG16, GoogleNet and ResNet-50) for high-resolution satellite image scene classification. We found that: (1) human labeling errors have significant class and instance dependence, which is fundamentally different from the simulation noise in previous studies; (2) regarding the overall accuracy of all classes, when human labeling errors in training data increase by one unit, the overall accuracy of ConvNets classification decreases by approximately half a unit; (3) regarding the accuracy of each class, the impact of human labeling errors on ConvNets shows large heterogeneity across classes. To uncover the mechanism underlying the impact of human labeling errors on ConvNets, we further compared it with two types of simulated labeling noise: uniform noise (errors independent of both classes and instances) and class-dependent noise (errors independent of instances but not classes). Our results show that the impact of human labeling errors on ConvNets is similar to that of the simulated class-dependent noise but not to that of the simulated uniform noise, suggesting that the impact of human labeling errors on ConvNets is mainly due to class-dependent errors rather than instance-dependent errors.
Abstract:Prioritizing fairness is of central importance in artificial intelligence (AI) systems, especially for those societal applications, e.g., hiring systems should recommend applicants equally from different demographic groups, and risk assessment systems must eliminate racism in criminal justice. Existing efforts towards the ethical development of AI systems have leveraged data science to mitigate biases in the training set or introduced fairness principles into the training process. For a deployed AI system, however, it may not allow for retraining or tuning in practice. By contrast, we propose a more flexible approach, i.e., fairness-aware adversarial perturbation (FAAP), which learns to perturb input data to blind deployed models on fairness-related features, e.g., gender and ethnicity. The key advantage is that FAAP does not modify deployed models in terms of parameters and structures. To achieve this, we design a discriminator to distinguish fairness-related attributes based on latent representations from deployed models. Meanwhile, a perturbation generator is trained against the discriminator, such that no fairness-related features could be extracted from perturbed inputs. Exhaustive experimental evaluation demonstrates the effectiveness and superior performance of the proposed FAAP. In addition, FAAP is validated on real-world commercial deployments (inaccessible to model parameters), which shows the transferability of FAAP, foreseeing the potential of black-box adaptation.