Abstract:Large language models (LLMs) often suffer from context faithfulness hallucinations, where outputs deviate from retrieved information due to insufficient context utilization and high output uncertainty. Our uncertainty evaluation experiments reveal a strong correlation between high uncertainty and hallucinations. We hypothesize that attention mechanisms encode signals indicative of contextual utilization, validated through probing analysis. Based on these insights, we propose Dynamic Attention-Guided Context Decoding (DAGCD), a lightweight framework that integrates attention distributions and uncertainty signals in a single-pass decoding process. Experiments across QA datasets demonstrate DAGCD's effectiveness, achieving significant improvements in faithfulness and robustness while maintaining computational efficiency.
Abstract:Layer removal has emerged as a promising approach for compressing large language models (LLMs) by leveraging redundancy within layers to reduce model size and accelerate inference. However, this technique often compromises internal consistency, leading to performance degradation and instability, with varying impacts across different model architectures. In this work, we propose Taco-SVD, a task-aware framework that retains task-critical singular value directions, preserving internal consistency while enabling efficient compression. Unlike direct layer removal, Taco-SVD preserves task-critical transformations to mitigate performance degradation. By leveraging gradient-based attribution methods, Taco-SVD aligns singular values with downstream task objectives. Extensive evaluations demonstrate that Taco-SVD outperforms existing methods in perplexity and task performance across different architectures while ensuring minimal computational overhead.
Abstract:Paraphrase generation is a longstanding NLP task and achieves great success with the aid of large corpora. However, transferring a paraphrasing model to another domain encounters the problem of domain shifting especially when the data is sparse. At the same time, widely using large pre-trained language models (PLMs) faces the overfitting problem when training on scarce labeled data. To mitigate these two issues, we propose, LAPA, an effective adapter for PLMs optimized by meta-learning. LAPA has three-stage training on three types of related resources to solve this problem: 1. pre-training PLMs on unsupervised corpora, 2. inserting an adapter layer and meta-training on source domain labeled data, and 3. fine-tuning adapters on a small amount of target domain labeled data. This method enables paraphrase generation models to learn basic language knowledge first, then learn the paraphrasing task itself later, and finally adapt to the target task. Our experimental results demonstrate that LAPA achieves state-of-the-art in supervised, unsupervised, and low-resource settings on three benchmark datasets. With only 2\% of trainable parameters and 1\% labeled data of the target task, our approach can achieve a competitive performance with previous work.
Abstract:Controllability and proactivity are crucial properties of autonomous conversational agents (CAs). Controllability requires the CAs to follow the standard operating procedures (SOPs), such as verifying identity before activating credit cards. Proactivity requires the CAs to guide the conversation towards the goal during user uncooperation, such as persuasive dialogue. Existing research cannot be unified with controllability, proactivity, and low manual annotation. To bridge this gap, we propose a new framework for planning-based conversational agents (PCA) powered by large language models (LLMs), which only requires humans to define tasks and goals for the LLMs. Before conversation, LLM plans the core and necessary SOP for dialogue offline. During the conversation, LLM plans the best action path online referring to the SOP, and generates responses to achieve process controllability. Subsequently, we propose a semi-automatic dialogue data creation framework and curate a high-quality dialogue dataset (PCA-D). Meanwhile, we develop multiple variants and evaluation metrics for PCA, e.g., planning with Monte Carlo Tree Search (PCA-M), which searches for the optimal dialogue action while satisfying SOP constraints and achieving the proactive of the dialogue. Experiment results show that LLMs finetuned on PCA-D can significantly improve the performance and generalize to unseen domains. PCA-M outperforms other CoT and ToT baselines in terms of conversation controllability, proactivity, task success rate, and overall logical coherence, and is applicable in industry dialogue scenarios. The dataset and codes are available at XXXX.
Abstract:Non-autoregressive (NAR) automatic speech recognition (ASR) models predict tokens independently and simultaneously, bringing high inference speed. However, there is still a gap in the accuracy of the NAR models compared to the autoregressive (AR) models. To further narrow the gap between the NAR and AR models, we propose a single-step NAR ASR architecture with high accuracy and inference speed, called EfficientASR. It uses an Index Mapping Vector (IMV) based alignment generator to generate alignments during training, and an alignment predictor to learn the alignments for inference. It can be trained end-to-end (E2E) with cross-entropy loss combined with alignment loss. The proposed EfficientASR achieves competitive results on the AISHELL-1 and AISHELL-2 benchmarks compared to the state-of-the-art (SOTA) models. Specifically, it achieves character error rates (CER) of 4.26%/4.62% on the AISHELL-1 dev/test dataset, which outperforms the SOTA AR Conformer with about 30x inference speedup.
Abstract:Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.
Abstract:The Conformer model is an excellent architecture for speech recognition modeling that effectively utilizes the hybrid losses of connectionist temporal classification (CTC) and attention to train model parameters. To improve the decoding efficiency of Conformer, we propose a novel connectionist temporal summarization (CTS) method that reduces the number of frames required for the attention decoder fed from the acoustic sequences generated by the encoder, thus reducing operations. However, to achieve such decoding improvements, we must fine-tune model parameters, as cross-attention observations are changed and thus require corresponding refinements. Our final experiments show that, with a beamwidth of 4, the LibriSpeech's decoding budget can be reduced by up to 20% and for FluentSpeech data it can be reduced by 11%, without losing ASR accuracy. An improvement in accuracy is even found for the LibriSpeech "test-other" set. The word error rate (WER) is reduced by 6\% relative at the beam width of 1 and by 3% relative at the beam width of 4.
Abstract:SLU combines ASR and NLU capabilities to accomplish speech-to-intent understanding. In this paper, we compare different ways to combine ASR and NLU, in particular using a single Conformer model with different ways to use its components, to better understand the strengths and weaknesses of each approach. We find that it is not necessarily a choice between two-stage decoding and end-to-end systems which determines the best system for research or application. System optimization still entails carefully improving the performance of each component. It is difficult to prove that one direction is conclusively better than the other. In this paper, we also propose a novel connectionist temporal summarization (CTS) method to reduce the length of acoustic encoding sequences while improving the accuracy and processing speed of end-to-end models. This method achieves the same intent accuracy as the best two-stage SLU recognition with complicated and time-consuming decoding but does so at lower computational cost. This stacked end-to-end SLU system yields an intent accuracy of 93.97% for the SmartLights far-field set, 95.18% for the close-field set, and 99.71% for FluentSpeech.
Abstract:One-Shot methods have evolved into one of the most popular methods in Neural Architecture Search (NAS) due to weight sharing and single training of a supernet. However, existing methods generally suffer from two issues: predetermined number of channels in each layer which is suboptimal; and model averaging effects and poor ranking correlation caused by weight coupling and continuously expanding search space. To explicitly address these issues, in this paper, a Broadening-and-Shrinking One-Shot NAS (BS-NAS) framework is proposed, in which `broadening' refers to broadening the search space with a spring block enabling search for numbers of channels during training of the supernet; while `shrinking' refers to a novel shrinking strategy gradually turning off those underperforming operations. The above innovations broaden the search space for wider representation and then shrink it by gradually removing underperforming operations, followed by an evolutionary algorithm to efficiently search for the optimal architecture. Extensive experiments on ImageNet illustrate the effectiveness of the proposed BS-NAS as well as the state-of-the-art performance.
Abstract:Owing to its unique literal and aesthetical characteristics, automatic generation of Chinese poetry is still challenging in Artificial Intelligence, which can hardly be straightforwardly realized by end-to-end methods. In this paper, we propose a novel iterative polishing framework for highly qualified Chinese poetry generation. In the first stage, an encoder-decoder structure is utilized to generate a poem draft. Afterwards, our proposed Quality-Aware Masked Language Model (QAMLM) is employed to polish the draft towards higher quality in terms of linguistics and literalness. Based on a multi-task learning scheme, QA-MLM is able to determine whether polishing is needed based on the poem draft. Furthermore, QAMLM is able to localize improper characters of the poem draft and substitute with newly predicted ones accordingly. Benefited from the masked language model structure, QAMLM incorporates global context information into the polishing process, which can obtain more appropriate polishing results than the unidirectional sequential decoding. Moreover, the iterative polishing process will be terminated automatically when QA-MLM regards the processed poem as a qualified one. Both human and automatic evaluation have been conducted, and the results demonstrate that our approach is effective to improve the performance of encoder-decoder structure.