Abstract:Synthesizing informative commercial reports from massive and noisy web sources is critical for high-stakes business decisions. Although current deep research agents achieve notable progress, their reports still remain limited in terms of quality, reliability, and coverage. In this work, we propose Mind2Report, a cognitive deep research agent that emulates the commercial analyst to synthesize expert-level reports. Specifically, it first probes fine-grained intent, then searches web sources and records distilled information on the fly, and subsequently iteratively synthesizes the report. We design Mind2Report as a training-free agentic workflow that augments general large language models (LLMs) with dynamic memory to support these long-form cognitive processes. To rigorously evaluate Mind2Report, we further construct QRC-Eval comprising 200 real-world commercial tasks and establish a holistic evaluation strategy to assess report quality, reliability, and coverage. Experiments demonstrate that Mind2Report outperforms leading baselines, including OpenAI and Gemini deep research agents. Although this is a preliminary study, we expect it to serve as a foundation for advancing the future design of commercial deep research agents. Our code and data are available at https://github.com/Melmaphother/Mind2Report.
Abstract:Controllability and proactivity are crucial properties of autonomous conversational agents (CAs). Controllability requires the CAs to follow the standard operating procedures (SOPs), such as verifying identity before activating credit cards. Proactivity requires the CAs to guide the conversation towards the goal during user uncooperation, such as persuasive dialogue. Existing research cannot be unified with controllability, proactivity, and low manual annotation. To bridge this gap, we propose a new framework for planning-based conversational agents (PCA) powered by large language models (LLMs), which only requires humans to define tasks and goals for the LLMs. Before conversation, LLM plans the core and necessary SOP for dialogue offline. During the conversation, LLM plans the best action path online referring to the SOP, and generates responses to achieve process controllability. Subsequently, we propose a semi-automatic dialogue data creation framework and curate a high-quality dialogue dataset (PCA-D). Meanwhile, we develop multiple variants and evaluation metrics for PCA, e.g., planning with Monte Carlo Tree Search (PCA-M), which searches for the optimal dialogue action while satisfying SOP constraints and achieving the proactive of the dialogue. Experiment results show that LLMs finetuned on PCA-D can significantly improve the performance and generalize to unseen domains. PCA-M outperforms other CoT and ToT baselines in terms of conversation controllability, proactivity, task success rate, and overall logical coherence, and is applicable in industry dialogue scenarios. The dataset and codes are available at XXXX.