Abstract:The rapid advancement of large language models (LLMs) has significantly enhanced their reasoning abilities, enabling increasingly complex tasks. However, these capabilities often diminish in smaller, more computationally efficient models like GPT-2. Recent research shows that reasoning distillation can help small models acquire reasoning capabilities, but most existing methods focus primarily on improving teacher-generated reasoning paths. Our observations reveal that small models can generate high-quality reasoning paths during sampling, even without chain-of-thought prompting, though these paths are often latent due to their low probability under standard decoding strategies. To address this, we propose Self-Enhanced Reasoning Training (SERT), which activates and leverages latent reasoning capabilities in small models through self-training on filtered, self-generated reasoning paths under zero-shot conditions. Experiments using OpenAI's GPT-3.5 as the teacher model and GPT-2 models as the student models demonstrate that SERT enhances the reasoning abilities of small models, improving their performance in reasoning distillation.
Abstract:Mesh generation plays a crucial role in scientific computing. Traditional mesh generation methods, such as TFI and PDE-based methods, often struggle to achieve a balance between efficiency and mesh quality. To address this challenge, physics-informed intelligent learning methods have recently emerged, significantly improving generation efficiency while maintaining high mesh quality. However, physics-informed methods fail to generalize when applied to previously unseen geometries, as even small changes in the boundary shape necessitate burdensome retraining to adapt to new geometric variations. In this paper, we introduce MeshONet, the first generalizable intelligent learning method for structured mesh generation. The method transforms the mesh generation task into an operator learning problem with multiple input and solution functions. To effectively overcome the multivariable mapping restriction of operator learning methods, we propose a dual-branch, shared-trunk architecture to approximate the mapping between function spaces based on input-output pairs. Experimental results show that MeshONet achieves a speedup of up to four orders of magnitude in generation efficiency over traditional methods. It also enables generalization to different geometries without retraining, greatly enhancing the practicality of intelligent methods.
Abstract:In deep regression, capturing the relationship among continuous labels in feature space is a fundamental challenge that has attracted increasing interest. Addressing this issue can prevent models from converging to suboptimal solutions across various regression tasks, leading to improved performance, especially for imbalanced regression and under limited sample sizes. However, existing approaches often rely on order-aware representation learning or distance-based weighting. In this paper, we hypothesize a linear negative correlation between label distances and representation similarities in regression tasks. To implement this, we propose an angle-compensated contrastive regularizer for deep regression, which adjusts the cosine distance between anchor and negative samples within the contrastive learning framework. Our method offers a plug-and-play compatible solution that extends most existing contrastive learning methods for regression tasks. Extensive experiments and theoretical analysis demonstrate that our proposed angle-compensated contrastive regularizer not only achieves competitive regression performance but also excels in data efficiency and effectiveness on imbalanced datasets.
Abstract:Large language models (LLMs) often suffer from context faithfulness hallucinations, where outputs deviate from retrieved information due to insufficient context utilization and high output uncertainty. Our uncertainty evaluation experiments reveal a strong correlation between high uncertainty and hallucinations. We hypothesize that attention mechanisms encode signals indicative of contextual utilization, validated through probing analysis. Based on these insights, we propose Dynamic Attention-Guided Context Decoding (DAGCD), a lightweight framework that integrates attention distributions and uncertainty signals in a single-pass decoding process. Experiments across QA datasets demonstrate DAGCD's effectiveness, achieving significant improvements in faithfulness and robustness while maintaining computational efficiency.
Abstract:Layer removal has emerged as a promising approach for compressing large language models (LLMs) by leveraging redundancy within layers to reduce model size and accelerate inference. However, this technique often compromises internal consistency, leading to performance degradation and instability, with varying impacts across different model architectures. In this work, we propose Taco-SVD, a task-aware framework that retains task-critical singular value directions, preserving internal consistency while enabling efficient compression. Unlike direct layer removal, Taco-SVD preserves task-critical transformations to mitigate performance degradation. By leveraging gradient-based attribution methods, Taco-SVD aligns singular values with downstream task objectives. Extensive evaluations demonstrate that Taco-SVD outperforms existing methods in perplexity and task performance across different architectures while ensuring minimal computational overhead.
Abstract:Vehicle detection and tracking in satellite video is essential in remote sensing (RS) applications. However, upon the statistical analysis of existing datasets, we find that the dim vehicles with low radiation intensity and limited contrast against the background are rarely annotated, which leads to the poor effect of existing approaches in detecting moving vehicles under low radiation conditions. In this paper, we address the challenge by building a \textbf{S}mall and \textbf{D}im \textbf{M}oving Cars (SDM-Car) dataset with a multitude of annotations for dim vehicles in satellite videos, which is collected by the Luojia 3-01 satellite and comprises 99 high-quality videos. Furthermore, we propose a method based on image enhancement and attention mechanisms to improve the detection accuracy of dim vehicles, serving as a benchmark for evaluating the dataset. Finally, we assess the performance of several representative methods on SDM-Car and present insightful findings. The dataset is openly available at https://github.com/TanedaM/SDM-Car.
Abstract:The audio watermarking technique embeds messages into audio and accurately extracts messages from the watermarked audio. Traditional methods develop algorithms based on expert experience to embed watermarks into the time-domain or transform-domain of signals. With the development of deep neural networks, deep learning-based neural audio watermarking has emerged. Compared to traditional algorithms, neural audio watermarking achieves better robustness by considering various attacks during training. However, current neural watermarking methods suffer from low capacity and unsatisfactory imperceptibility. Additionally, the issue of watermark locating, which is extremely important and even more pronounced in neural audio watermarking, has not been adequately studied. In this paper, we design a dual-embedding watermarking model for efficient locating. We also consider the impact of the attack layer on the invertible neural network in robustness training, improving the model to enhance both its reasonableness and stability. Experiments show that the proposed model, IDEAW, can withstand various attacks with higher capacity and more efficient locating ability compared to existing methods.
Abstract:The rocketing prosperity of large language models (LLMs) in recent years has boosted the prevalence of vision-language models (VLMs) in the medical sector. In our online medical consultation scenario, a doctor responds to the texts and images provided by a patient in multiple rounds to diagnose her/his health condition, forming a multi-turn multimodal medical dialogue format. Unlike high-quality images captured by professional equipment in traditional medical visual question answering (Med-VQA), the images in our case are taken by patients' mobile phones. These images have poor quality control, with issues such as excessive background elements and the lesion area being significantly off-center, leading to degradation of vision-language alignment in the model training phase. In this paper, we propose ZALM3, a Zero-shot strategy to improve vision-language ALignment in Multi-turn Multimodal Medical dialogue. Since we observe that the preceding text conversations before an image can infer the regions of interest (RoIs) in the image, ZALM3 employs an LLM to summarize the keywords from the preceding context and a visual grounding model to extract the RoIs. The updated images eliminate unnecessary background noise and provide more effective vision-language alignment. To better evaluate our proposed method, we design a new subjective assessment metric for multi-turn unimodal/multimodal medical dialogue to provide a fine-grained performance comparison. Our experiments across three different clinical departments remarkably demonstrate the efficacy of ZALM3 with statistical significance.
Abstract:Knowledge tracing is a technique that predicts students' future performance by analyzing their learning process through historical interactions with intelligent educational platforms, enabling a precise evaluation of their knowledge mastery. Recent studies have achieved significant progress by leveraging powerful deep neural networks. These models construct complex input representations using questions, skills, and other auxiliary information but overlook individual student characteristics, which limits the capability for personalized assessment. Additionally, the available datasets in the field exhibit class imbalance issues. The models that simply predict all responses as correct without substantial effort can yield impressive accuracy. In this paper, we propose PKT, a novel approach for personalized knowledge tracing. PKT reconstructs representations from sequences of interactions with a tutoring platform to capture latent information about the students. Moreover, PKT incorporates focal loss to improve prioritize minority classes, thereby achieving more balanced predictions. Extensive experimental results on four publicly available educational datasets demonstrate the advanced predictive performance of PKT in comparison with 16 state-of-the-art models. To ensure the reproducibility of our research, the code is publicly available at https://anonymous.4open.science/r/PKT.
Abstract:Online Domain Adaptation (OnDA) is designed to handle unforeseeable domain changes at minimal cost that occur during the deployment of the model, lacking clear boundaries between the domain, such as sudden weather events. However, existing OnDA methods that rely solely on the model itself to adapt to the current domain often misidentify ambiguous classes amidst continuous domain shifts and pass on this erroneous knowledge to the next domain. To tackle this, we propose \textbf{RODASS}, a \textbf{R}obust \textbf{O}nline \textbf{D}omain \textbf{A}daptive \textbf{S}emantic \textbf{S}egmentation framework, which dynamically detects domain shifts and adjusts hyper-parameters to minimize training costs and error propagation. Specifically, we introduce the \textbf{D}ynamic \textbf{A}mbiguous \textbf{P}atch \textbf{Mask} (\textbf{DAP Mask}) strategy, which dynamically selects highly disturbed regions and masks these regions, mitigating error accumulation in ambiguous classes and enhancing the model's robustness against external noise in dynamic natural environments. Additionally, we present the \textbf{D}ynamic \textbf{S}ource \textbf{C}lass \textbf{Mix} (\textbf{DSC Mix}), a domain-aware mix method that augments target domain scenes with class-level source buffers, reducing the high uncertainty and noisy labels, thereby accelerating adaptation and offering a more efficient solution for online domain adaptation. Our approach outperforms state-of-the-art methods on widely used OnDA benchmarks while maintaining approximately 40 frames per second (FPS).