Beijing University of Technology
Abstract:In zero-shot image recognition tasks, humans demonstrate remarkable flexibility in classifying unseen categories by composing known simpler concepts. However, existing vision-language models (VLMs), despite achieving significant progress through large-scale natural language supervision, often underperform in real-world applications because of sub-optimal prompt engineering and the inability to adapt effectively to target classes. To address these issues, we propose a Concept-guided Human-like Bayesian Reasoning (CHBR) framework. Grounded in Bayes' theorem, CHBR models the concept used in human image recognition as latent variables and formulates this task by summing across potential concepts, weighted by a prior distribution and a likelihood function. To tackle the intractable computation over an infinite concept space, we introduce an importance sampling algorithm that iteratively prompts large language models (LLMs) to generate discriminative concepts, emphasizing inter-class differences. We further propose three heuristic approaches involving Average Likelihood, Confidence Likelihood, and Test Time Augmentation (TTA) Likelihood, which dynamically refine the combination of concepts based on the test image. Extensive evaluations across fifteen datasets demonstrate that CHBR consistently outperforms existing state-of-the-art zero-shot generalization methods.
Abstract:Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at https://github.com/Clausy9/BMTNet.
Abstract:This study proposes a dynamic rule data mining algorithm based on an improved Transformer architecture, aiming to improve the accuracy and efficiency of rule mining in a dynamic data environment. With the increase in data volume and complexity, traditional data mining methods are difficult to cope with dynamic data with strong temporal and variable characteristics, so new algorithms are needed to capture the temporal regularity in the data. By improving the Transformer architecture, and introducing a dynamic weight adjustment mechanism and a temporal dependency module, we enable the model to adapt to data changes and mine more accurate rules. Experimental results show that compared with traditional rule mining algorithms, the improved Transformer model has achieved significant improvements in rule mining accuracy, coverage, and stability. The contribution of each module in the algorithm performance is further verified by ablation experiments, proving the importance of temporal dependency and dynamic weight adjustment mechanisms in improving the model effect. In addition, although the improved model has certain challenges in computational efficiency, its advantages in accuracy and coverage enable it to perform well in processing complex dynamic data. Future research will focus on optimizing computational efficiency and combining more deep learning technologies to expand the application scope of the algorithm, especially in practical applications in the fields of finance, medical care, and intelligent recommendation.
Abstract:Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
Abstract:Enhancing reasoning in Large Multimodal Models (LMMs) faces unique challenges from the complex interplay between visual perception and logical reasoning, particularly in compact 3B-parameter architectures where architectural constraints limit reasoning capacity and modality alignment. While rule-based reinforcement learning (RL) excels in text-only domains, its multimodal extension confronts two critical barriers: (1) data limitations due to ambiguous answers and scarce complex reasoning examples, and (2) degraded foundational reasoning induced by multimodal pretraining. To address these challenges, we propose \textbf{LMM-R1}, a two-stage framework adapting rule-based RL for multimodal reasoning through \textbf{Foundational Reasoning Enhancement (FRE)} followed by \textbf{Multimodal Generalization Training (MGT)}. The FRE stage first strengthens reasoning abilities using text-only data with rule-based RL, then the MGT stage generalizes these reasoning capabilities to multimodal domains. Experiments on Qwen2.5-VL-Instruct-3B demonstrate that LMM-R1 achieves 4.83\% and 4.5\% average improvements over baselines in multimodal and text-only benchmarks, respectively, with a 3.63\% gain in complex Football Game tasks. These results validate that text-based reasoning enhancement enables effective multimodal generalization, offering a data-efficient paradigm that bypasses costly high-quality multimodal training data.
Abstract:Transformer-based methods have demonstrated impressive performance in low-level visual tasks such as Image Super-Resolution (SR). However, its computational complexity grows quadratically with the spatial resolution. A series of works attempt to alleviate this problem by dividing Low-Resolution images into local windows, axial stripes, or dilated windows. SR typically leverages the redundancy of images for reconstruction, and this redundancy appears not only in local regions but also in long-range regions. However, these methods limit attention computation to content-agnostic local regions, limiting directly the ability of attention to capture long-range dependency. To address these issues, we propose a lightweight Content-Aware Token Aggregation Network (CATANet). Specifically, we propose an efficient Content-Aware Token Aggregation module for aggregating long-range content-similar tokens, which shares token centers across all image tokens and updates them only during the training phase. Then we utilize intra-group self-attention to enable long-range information interaction. Moreover, we design an inter-group cross-attention to further enhance global information interaction. The experimental results show that, compared with the state-of-the-art cluster-based method SPIN, our method achieves superior performance, with a maximum PSNR improvement of 0.33dB and nearly double the inference speed.
Abstract:Deep neural network (DNN) models are increasingly popular in edge video analytic applications. However, the compute-intensive nature of DNN models pose challenges for energy-efficient inference on resource-constrained edge devices. Most existing solutions focus on optimizing DNN inference latency and accuracy, often overlooking energy efficiency. They also fail to account for the varying complexity of video frames, leading to sub-optimal performance in edge video analytics. In this paper, we propose an Energy-Efficient Early-Exit (E4) framework that enhances DNN inference efficiency for edge video analytics by integrating a novel early-exit mechanism with dynamic voltage and frequency scaling (DVFS) governors. It employs an attention-based cascade module to analyze video frame diversity and automatically determine optimal DNN exit points. Additionally, E4 features a just-in-time (JIT) profiler that uses coordinate descent search to co-optimize CPU and GPU clock frequencies for each layer before the DNN exit points. Extensive evaluations demonstrate that E4 outperforms current state-of-the-art methods, achieving up to 2.8x speedup and 26% average energy saving while maintaining high accuracy.
Abstract:In this work, we address the challenge of adaptive pediatric Left Ventricular Ejection Fraction (LVEF) assessment. While Test-time Training (TTT) approaches show promise for this task, they suffer from two significant limitations. Existing TTT works are primarily designed for classification tasks rather than continuous value regression, and they lack mechanisms to handle the quasi-periodic nature of cardiac signals. To tackle these issues, we propose a novel \textbf{Q}uasi-\textbf{P}eriodic \textbf{A}daptive \textbf{R}egression with \textbf{T}est-time Training (Q-PART) framework. In the training stage, the proposed Quasi-Period Network decomposes the echocardiogram into periodic and aperiodic components within latent space by combining parameterized helix trajectories with Neural Controlled Differential Equations. During inference, our framework further employs a variance minimization strategy across image augmentations that simulate common quality issues in echocardiogram acquisition, along with differential adaptation rates for periodic and aperiodic components. Theoretical analysis is provided to demonstrate that our variance minimization objective effectively bounds the regression error under mild conditions. Furthermore, extensive experiments across three pediatric age groups demonstrate that Q-PART not only significantly outperforms existing approaches in pediatric LVEF prediction, but also exhibits strong clinical screening capability with high mAUROC scores (up to 0.9747) and maintains gender-fair performance across all metrics, validating its robustness and practical utility in pediatric echocardiography analysis.
Abstract:In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
Abstract:Large Language Models (LLMs) have made remarkable advances in role-playing dialogue agents, demonstrating their utility in character simulations. However, it remains challenging for these agents to balance character portrayal utility with content safety because this essential character simulation often comes with the risk of generating unsafe content. To address this issue, we first conduct a systematic exploration of the safety-utility trade-off across multiple LLMs. Our analysis reveals that risk scenarios created by villain characters and user queries (referred to as risk coupling) contribute to this trade-off. Building on this, we propose a novel Adaptive Dynamic Multi-Preference (ADMP) method, which dynamically adjusts safety-utility preferences based on the degree of risk coupling and guides the model to generate responses biased toward utility or safety. We further introduce Coupling Margin Sampling (CMS) into coupling detection to enhance the model's ability to handle high-risk scenarios. Experimental results demonstrate that our approach improves safety metrics while maintaining utility.