Abstract:Digital accessibility is a cornerstone of inclusive content delivery, yet many EPUB files fail to meet fundamental accessibility standards, particularly in providing descriptive alt text for images. Alt text plays a critical role in enabling visually impaired users to understand visual content through assistive technologies. However, generating high-quality alt text at scale is a resource-intensive process, creating significant challenges for organizations aiming to ensure accessibility compliance. This paper introduces AltGen, a novel AI-driven pipeline designed to automate the generation of alt text for images in EPUB files. By integrating state-of-the-art generative models, including advanced transformer-based architectures, AltGen achieves contextually relevant and linguistically coherent alt text descriptions. The pipeline encompasses multiple stages, starting with data preprocessing to extract and prepare relevant content, followed by visual analysis using computer vision models such as CLIP and ViT. The extracted visual features are enriched with contextual information from surrounding text, enabling the fine-tuned language models to generate descriptive and accurate alt text. Validation of the generated output employs both quantitative metrics, such as cosine similarity and BLEU scores, and qualitative feedback from visually impaired users. Experimental results demonstrate the efficacy of AltGen across diverse datasets, achieving a 97.5% reduction in accessibility errors and high scores in similarity and linguistic fidelity metrics. User studies highlight the practical impact of AltGen, with participants reporting significant improvements in document usability and comprehension. Furthermore, comparative analyses reveal that AltGen outperforms existing approaches in terms of accuracy, relevance, and scalability.
Abstract:Large Language Models (LLMs) have demonstrated significant effectiveness across various NLP tasks, including text ranking. This study assesses the performance of large language models (LLMs) in listwise reranking for limited-resource African languages. We compare proprietary models RankGPT3.5, Rank4o-mini, RankGPTo1-mini and RankClaude-sonnet in cross-lingual contexts. Results indicate that these LLMs significantly outperform traditional baseline methods such as BM25-DT in most evaluation metrics, particularly in nDCG@10 and MRR@100. These findings highlight the potential of LLMs in enhancing reranking tasks for low-resource languages and offer insights into cost-effective solutions.
Abstract:Large Language Models (LLMs) have shown remarkable performance across various tasks, but the escalating demands on computational resources pose significant challenges, particularly in the extensive utilization of full fine-tuning for downstream tasks. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed, but they often underperform compared to full fine-tuning and struggle with memory efficiency. In this work, we introduce Gradient Weight-Normalized Low-Rank Projection (GradNormLoRP), a novel approach that enhances both parameter and memory efficiency while maintaining comparable performance to full fine-tuning. GradNormLoRP normalizes the weight matrix to improve gradient conditioning, facilitating better convergence during optimization. Additionally, it applies low-rank approximations to the weight and gradient matrices, significantly reducing memory usage during training. Extensive experiments demonstrate that our 8-bit GradNormLoRP reduces optimizer memory usage by up to 89.5% and enables the pre-training of large LLMs, such as LLaMA 7B, on consumer-level GPUs like the NVIDIA RTX 4090, without additional inference costs. Moreover, GradNormLoRP outperforms existing low-rank methods in fine-tuning tasks. For instance, when fine-tuning the RoBERTa model on all GLUE tasks with a rank of 8, GradNormLoRP achieves an average score of 80.65, surpassing LoRA's score of 79.23. These results underscore GradNormLoRP as a promising alternative for efficient LLM pre-training and fine-tuning. Source code and Appendix: https://github.com/Jhhuangkay/Gradient-Weight-normalized-Low-rank-Projection-for-Efficient-LLM-Training
Abstract:The increasing deployment of Large Language Models (LLMs) in various applications necessitates a rigorous evaluation of their robustness against adversarial attacks. In this paper, we present a comprehensive study on the robustness of GPT LLM family. We employ two distinct evaluation methods to assess their resilience. The first method introduce character-level text attack in input prompts, testing the models on three sentiment classification datasets: StanfordNLP/IMDB, Yelp Reviews, and SST-2. The second method involves using jailbreak prompts to challenge the safety mechanisms of the LLMs. Our experiments reveal significant variations in the robustness of these models, demonstrating their varying degrees of vulnerability to both character-level and semantic-level adversarial attacks. These findings underscore the necessity for improved adversarial training and enhanced safety mechanisms to bolster the robustness of LLMs.
Abstract:Evaluating the quality of automatically generated image descriptions is a complex task that requires metrics capturing various dimensions, such as grammaticality, coverage, accuracy, and truthfulness. Although human evaluation provides valuable insights, its cost and time-consuming nature pose limitations. Existing automated metrics like BLEU, ROUGE, METEOR, and CIDEr attempt to fill this gap, but they often exhibit weak correlations with human judgment. To address this challenge, we propose a novel evaluation framework called Image2Text2Image, which leverages diffusion models, such as Stable Diffusion or DALL-E, for text-to-image generation. In the Image2Text2Image framework, an input image is first processed by a selected image captioning model, chosen for evaluation, to generate a textual description. Using this generated description, a diffusion model then creates a new image. By comparing features extracted from the original and generated images, we measure their similarity using a designated similarity metric. A high similarity score suggests that the model has produced a faithful textual description, while a low score highlights discrepancies, revealing potential weaknesses in the model's performance. Notably, our framework does not rely on human-annotated reference captions, making it a valuable tool for assessing image captioning models. Extensive experiments and human evaluations validate the efficacy of our proposed Image2Text2Image evaluation framework. The code and dataset will be published to support further research in the community.
Abstract:In the era of large language models, parameter-efficient fine-tuning (PEFT) has been extensively studied. However, these approaches usually rely on the space domain, which encounters storage challenges especially when handling extensive adaptations or larger models. The frequency domain, in contrast, is more effective in compressing trainable parameters while maintaining the expressive capability. In this paper, we propose a novel Selective Discrete Cosine Transformation (sDCTFT) fine-tuning scheme to push this frontier. Its general idea is to exploit the superior energy compaction and decorrelation properties of DCT to improve both model efficiency and accuracy. Specifically, it projects the weight change from the low-rank adaptation into the discrete cosine space. Then, the weight change is partitioned over different levels of the discrete cosine spectrum, and the most critical frequency components in each partition are selected. Extensive experiments on four benchmark datasets demonstrate the superior accuracy, reduced computational cost, and lower storage requirements of the proposed method over the prior arts. For instance, when performing instruction tuning on the LLaMA3.1-8B model, sDCTFT outperforms LoRA with just 0.05M trainable parameters compared to LoRA's 38.2M, and surpasses FourierFT with 30\% less trainable parameters. The source code will be publicly available.
Abstract:Evaluating the quality of automatically generated image descriptions is challenging, requiring metrics that capture various aspects such as grammaticality, coverage, correctness, and truthfulness. While human evaluation offers valuable insights, its cost and time-consuming nature pose limitations. Existing automated metrics like BLEU, ROUGE, METEOR, and CIDEr aim to bridge this gap but often show weak correlations with human judgment. We address this challenge by introducing a novel evaluation framework rooted in a modern large language model (LLM), such as GPT-4 or Gemini, capable of image generation. In our proposed framework, we begin by feeding an input image into a designated image captioning model, chosen for evaluation, to generate a textual description. Using this description, an LLM then creates a new image. By extracting features from both the original and LLM-created images, we measure their similarity using a designated similarity metric. A high similarity score suggests that the image captioning model has accurately generated textual descriptions, while a low similarity score indicates discrepancies, revealing potential shortcomings in the model's performance. Human-annotated reference captions are not required in our proposed evaluation framework, which serves as a valuable tool for evaluating the effectiveness of image captioning models. Its efficacy is confirmed through human evaluation.
Abstract:The legal landscape encompasses a wide array of lawsuit types, presenting lawyers with challenges in delivering timely and accurate information to clients, particularly concerning critical aspects like potential imprisonment duration or financial repercussions. Compounded by the scarcity of legal experts, there's an urgent need to enhance the efficiency of traditional legal workflows. Recent advances in deep learning, especially Large Language Models (LLMs), offer promising solutions to this challenge. Leveraging LLMs' mathematical reasoning capabilities, we propose a novel approach integrating LLM-based methodologies with specially designed prompts to address precision requirements in legal Artificial Intelligence (LegalAI) applications. The proposed work seeks to bridge the gap between traditional legal practices and modern technological advancements, paving the way for a more accessible, efficient, and equitable legal system. To validate this method, we introduce a curated dataset tailored to precision-oriented LegalAI tasks, serving as a benchmark for evaluating LLM-based approaches. Extensive experimentation confirms the efficacy of our methodology in generating accurate numerical estimates within the legal domain, emphasizing the role of LLMs in streamlining legal processes and meeting the evolving demands of LegalAI.