Abstract:Running deep neural networks for large medical images is a resource-hungry and time-consuming task with centralized computing. Outsourcing such medical image processing tasks to hybrid clouds has benefits, such as a significant reduction of execution time and monetary cost. However, due to privacy concerns, it is still challenging to process sensitive medical images over clouds, which would hinder their deployment in many real-world applications. To overcome this, we first formulate the overall optimization objectives of the privacy-preserving distributed system model, i.e., minimizing the amount of information about the private data learned by the adversaries throughout the process, reducing the maximum execution time and cost under the user budget constraint. We propose a novel privacy-preserving and cost-effective method called PriCE to solve this multi-objective optimization problem. We performed extensive simulation experiments for artifact detection tasks on medical images using an ensemble of five deep convolutional neural network inferences as the workflow task. Experimental results show that PriCE successfully splits a wide range of input gigapixel medical images with graph-coloring-based strategies, yielding desired output utility and lowering the privacy risk, makespan, and monetary cost under user's budget.
Abstract:Digital Twin (DT) is a prominent technology to utilise and deploy within the healthcare sector. Yet, the main challenges facing such applications are: Strict health data-sharing policies, high-performance network requirements, and possible infrastructure resource limitations. In this paper, we address all the challenges by provisioning adaptive Virtual Network Functions (VNFs) to enforce security policies associated with different data-sharing scenarios. We define a Cloud-Native Network orchestrator on top of a multi-node cluster mesh infrastructure for flexible and dynamic container scheduling. The proposed framework considers the intended data-sharing use case, the policies associated, and infrastructure configurations, then provision Service Function Chaining (SFC) and provides routing configurations accordingly with little to no human intervention. Moreover, what is \textit{optimal} when deploying SFC is dependent on the use case itself, and we tune the hyperparameters to prioritise resource utilisation or latency in an effort to comply with the performance requirements. As a result, we provide an adaptive network orchestration for digital health twin use cases, that is policy-aware, requirements-aware, and resource-aware.
Abstract:The fifth generation (5G) of wireless networks is set out to meet the stringent requirements of vehicular use cases. Edge computing resources can aid in this direction by moving processing closer to end-users, reducing latency. However, given the stochastic nature of traffic loads and availability of physical resources, appropriate auto-scaling mechanisms need to be employed to support cost-efficient and performant services. To this end, we employ Deep Reinforcement Learning (DRL) for vertical scaling in Edge computing to support vehicular-to-network communications. We address the problem using Deep Deterministic Policy Gradient (DDPG). As DDPG is a model-free off-policy algorithm for learning continuous actions, we introduce a discretization approach to support discrete scaling actions. Thus we address scalability problems inherent to high-dimensional discrete action spaces. Employing a real-world vehicular trace data set, we show that DDPG outperforms existing solutions, reducing (at minimum) the average number of active CPUs by 23% while increasing the long-term reward by 24%.