Abstract:We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.
Abstract:This paper presents a novel two-stage approach for reconstructing human faces from sparse-view images, a task made challenging by the unique geometry and complex skin reflectance of each individual. Our method focuses on decomposing key facial attributes, including geometry, diffuse reflectance, and specular reflectance, from ambient light. Initially, we create a general facial template from a diverse collection of individual faces, capturing essential geometric and reflectance characteristics. Guided by this template, we refine each specific face model in the second stage, which further considers the interaction between geometry and reflectance, as well as the subsurface scattering effects on facial skin. Our method enables the reconstruction of high-quality facial representations from as few as three images, offering improved geometric accuracy and reflectance detail. Through comprehensive evaluations and comparisons, our method demonstrates superiority over existing techniques. Our method effectively disentangles geometry and reflectance components, leading to enhanced quality in synthesizing new views and opening up possibilities for applications such as relighting and reflectance editing. We will make the code publicly available.
Abstract:Neural radiance fields (NeRF) typically require a complete set of images taken from multiple camera perspectives to accurately reconstruct geometric details. However, this approach raise significant privacy concerns in the context of facial reconstruction. The critical need for privacy protection often leads invidividuals to be reluctant in sharing their facial images, due to fears of potential misuse or security risks. Addressing these concerns, we propose a method that leverages privacy-preserving images for reconstructing 3D head geometry within the NeRF framework. Our method stands apart from traditional facial reconstruction techniques as it does not depend on RGB information from images containing sensitive facial data. Instead, it effectively generates plausible facial geometry using a series of identity-obscured inputs, thereby protecting facial privacy.
Abstract:The growing capabilities of neural rendering have increased the demand for new techniques that enable the intuitive editing of 3D objects, particularly when they are represented as neural implicit surfaces. In this paper, we present a novel neural algorithm to parameterize neural implicit surfaces to simple parametric domains, such as spheres, cubes or polycubes, where 3D radiance field can be represented as a 2D field, thereby facilitating visualization and various editing tasks. Technically, our method computes a bi-directional deformation between 3D objects and their chosen parametric domains, eliminating the need for any prior information. We adopt a forward mapping of points on the zero level set of the 3D object to a parametric domain, followed by a backward mapping through inverse deformation. To ensure the map is bijective, we employ a cycle loss while optimizing the smoothness of both deformations. Additionally, we leverage a Laplacian regularizer to effectively control angle distortion and offer the flexibility to choose from a range of parametric domains for managing area distortion. Designed for compatibility, our framework integrates seamlessly with existing neural rendering pipelines, taking multi-view images as input to reconstruct 3D geometry and compute the corresponding texture map. We also introduce a simple yet effective technique for intrinsic radiance decomposition, facilitating both view-independent material editing and view-dependent shading editing. Our method allows for the immediate rendering of edited textures through volume rendering, without the need for network re-training. Moreover, our approach supports the co-parameterization of multiple objects and enables texture transfer between them. We demonstrate the effectiveness of our method on images of human heads and man-made objects. We will make the source code publicly available.
Abstract:We propose a robust method for learning neural implicit functions that can reconstruct 3D human heads with high-fidelity geometry from low-view inputs. We represent 3D human heads as the zero level-set of a composed signed distance field that consists of a smooth template, a non-rigid deformation, and a high-frequency displacement field. The template represents identity-independent and expression-neutral features, which is trained on multiple individuals, along with the deformation network. The displacement field encodes identity-dependent geometric details, trained for each specific individual. We train our network in two stages using a coarse-to-fine strategy without 3D supervision. Our experiments demonstrate that the geometry decomposition and two-stage training make our method robust and our model outperforms existing methods in terms of reconstruction accuracy and novel view synthesis under low-view settings. Additionally, the pre-trained template serves a good initialization for our model to adapt to unseen individuals.