NSF Center for Big Learning, University of Florida, Gainesville, FL
Abstract:In the preclinical translational studies, drug candidates with remarkable anti-epileptic efficacy demonstrate long-term suppression of spontaneous recurrent seizures (SRSs), particularly convulsive seizures (CSs), in mouse models of chronic epilepsy. However, the current methods for monitoring CSs have limitations in terms of invasiveness, specific laboratory settings, high cost, and complex operation, which hinder drug screening efforts. In this study, a camera-based system for automated detection of CSs in chronically epileptic mice is first established to screen potential anti-epilepsy drugs.
Abstract:Single-cell RNA sequencing (scRNA-seq) technology provides high-throughput gene expression data to study the cellular heterogeneity and dynamics of complex organisms. Graph neural networks (GNNs) have been widely used for automatic cell type classification, which is a fundamental problem to solve in scRNA-seq analysis. However, existing methods do not sufficiently exploit both gene-gene and cell-cell relationships, and thus the true potential of GNNs is not realized. In this work, we propose a bilevel graph representation learning method, named scBiGNN, to simultaneously mine the relationships at both gene and cell levels for more accurate single-cell classification. Specifically, scBiGNN comprises two GNN modules to identify cell types. A gene-level GNN is established to adaptively learn gene-gene interactions and cell representations via the self-attention mechanism, and a cell-level GNN builds on the cell-cell graph that is constructed from the cell representations generated by the gene-level GNN. To tackle the scalability issue for processing a large number of cells, scBiGNN adopts an Expectation Maximization (EM) framework in which the two modules are alternately trained via the E-step and M-step to learn from each other. Through this interaction, the gene- and cell-level structural information is integrated to gradually enhance the classification performance of both GNN modules. Experiments on benchmark datasets demonstrate that our scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
Abstract:Building comprehensive brain connectomes has proved of fundamental importance in resting-state fMRI (rs-fMRI) analysis. Based on the foundation of brain network, spatial-temporal-based graph convolutional networks have dramatically improved the performance of deep learning methods in rs-fMRI time series classification. However, existing works either pre-define the brain network as the correlation matrix derived from the raw time series or jointly learn the connectome and model parameters without any topology constraint. These methods could suffer from degraded classification performance caused by the deviation from the intrinsic brain connectivity and lack biological interpretability of demonstrating the causal structure (i.e., effective connectivity) among brain regions. Moreover, most existing methods for effective connectivity learning are unaware of the downstream classification task and cannot sufficiently exploit useful rs-fMRI label information. To address these issues in an end-to-end manner, we model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions and propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series by learning brain representations based on nonlinear structural equation model. The optimization problem is formulated into a continuous program and solved with score-based learning method via gradient descent. We evaluate ST-DAGCN on two public rs-fMRI databases. Experiments show that ST-DAGCN outperforms existing models by evident margins in rs-fMRI classification and simultaneously learns meaningful edges of effective connectivity that help understand brain activity patterns and pathological mechanisms in brain disease.
Abstract:Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffraction limit. However, the technology requires coating conductive films on insulator samples and a vacuum environment. We use deep learning to obtain the mapping relationship between optical super-resolution (OSR) images and SEM domain images, which enables the transformation of OSR images into SEM-like large depth-of-field images. Our custom-built scanning superlens microscopy (SSUM) system, which requires neither coating samples by conductive films nor a vacuum environment, is used to acquire the OSR images with features down to ~80 nm. The peak signal-to-noise ratio (PSNR) and structural similarity index measure values indicate that the deep learning method performs excellently in image-to-image translation, with a PSNR improvement of about 0.74 dB over the optical super-resolution images. The proposed method provides a high level of detail in the reconstructed results, indicating that it has broad applicability to chip-level defect detection, biological sample analysis, forensics, and various other fields.
Abstract:Neural network pruning has been a well-established compression technique to enable deep learning models on resource-constrained devices. The pruned model is usually specialized to meet specific hardware platforms and training tasks (defined as deployment scenarios). However, existing pruning approaches rely heavily on training data to trade off model size, efficiency, and accuracy, which becomes ineffective for federated learning (FL) over distributed and confidential datasets. Moreover, the memory- and compute-intensive pruning process of most existing approaches cannot be handled by most FL devices with resource limitations. In this paper, we develop FedTiny, a novel distributed pruning framework for FL, to obtain specialized tiny models for memory- and computing-constrained participating devices with confidential local data. To alleviate biased pruning due to unseen heterogeneous data over devices, FedTiny introduces an adaptive batch normalization (BN) selection module to adaptively obtain an initially pruned model to fit deployment scenarios. Besides, to further improve the initial pruning, FedTiny develops a lightweight progressive pruning module for local finer pruning under tight memory and computational budgets, where the pruning policy for each layer is gradually determined rather than evaluating the overall deep model structure. Extensive experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art baseline approaches, especially when compressing deep models to extremely sparse tiny models.
Abstract:Federated learning allows distributed devices to collectively train a model without sharing or disclosing the local dataset with a central server. The global model is optimized by training and averaging the model parameters of all local participants. However, the improved privacy of federated learning also introduces challenges including higher computation and communication costs. In particular, federated learning converges slower than centralized training. We propose the server averaging algorithm to accelerate convergence. Sever averaging constructs the shared global model by periodically averaging a set of previous global models. Our experiments indicate that server averaging not only converges faster, to a target accuracy, than federated averaging (FedAvg), but also reduces the computation costs on the client-level through epoch decay.
Abstract:Deep neural networks (DNNs) have become the essential components for various commercialized machine learning services, such as Machine Learning as a Service (MLaaS). Recent studies show that machine learning services face severe privacy threats - well-trained DNNs owned by MLaaS providers can be stolen through public APIs, namely model stealing attacks. However, most existing works undervalued the impact of such attacks, where a successful attack has to acquire confidential training data or auxiliary data regarding the victim DNN. In this paper, we propose ES Attack, a novel model stealing attack without any data hurdles. By using heuristically generated synthetic data, ES Attackiteratively trains a substitute model and eventually achieves a functionally equivalent copy of the victim DNN. The experimental results reveal the severity of ES Attack: i) ES Attack successfully steals the victim model without data hurdles, and ES Attack even outperforms most existing model stealing attacks using auxiliary data in terms of model accuracy; ii) most countermeasures are ineffective in defending ES Attack; iii) ES Attack facilitates further attacks relying on the stolen model.
Abstract:Current federated learning algorithms take tens of communication rounds transmitting unwieldy model weights under ideal circumstances and hundreds when data is poorly distributed. Inspired by recent work on dataset distillation and distributed one-shot learning, we propose Distilled One-Shot Federated Learning, which reduces the number of communication rounds required to train a performant model to only one. Each client distills their private dataset and sends the synthetic data (e.g. images or sentences) to the server. The distilled data look like noise and become useless after model fitting. We empirically show that, in only one round of communication, our method can achieve 96% test accuracy on federated MNIST with LeNet (centralized 99%), 81% on federated IMDB with a customized CNN (centralized 86%), and 84% on federated TREC-6 with a Bi-LSTM (centralized 89%). Using only a few rounds, DOSFL can match the centralized baseline on all three tasks. By evading the need for model-wise updates (i.e., weights, gradients, loss, etc.), the total communication cost of DOSFL is reduced by over an order of magnitude. We believe that DOSFL represents a new direction orthogonal to previous work, towards weight-less and gradient-less federated learning.
Abstract:Asking questions from natural language text has attracted increasing attention recently, and several schemes have been proposed with promising results by asking the right question words and copy relevant words from the input to the question. However, most state-of-the-art methods focus on asking simple questions involving single-hop relations. In this paper, we propose a new task called multihop question generation that asks complex and semantically relevant questions by additionally discovering and modeling the multiple entities and their semantic relations given a collection of documents and the corresponding answer 1. To solve the problem, we propose multi-hop answer-focused reasoning on the grounded answer-centric entity graph to include different granularity levels of semantic information including the word-level and document-level semantics of the entities and their semantic relations. Through extensive experiments on the HOTPOTQA dataset, we demonstrate the superiority and effectiveness of our proposed model that serves as a baseline to motivate future work.
Abstract:Recently web applications have been widely used in enterprises to assist employees in providing effective and efficient business processes. Forecasting upcoming web events in enterprise web applications can be beneficial in many ways, such as efficient caching and recommendation. In this paper, we present a web event forecasting approach, DeepEvent, in enterprise web applications for better anomaly detection. DeepEvent includes three key features: web-specific neural networks to take into account the characteristics of sequential web events, self-supervised learning techniques to overcome the scarcity of labeled data, and sequence embedding techniques to integrate contextual events and capture dependencies among web events. We evaluate DeepEvent on web events collected from six real-world enterprise web applications. Our experimental results demonstrate that DeepEvent is effective in forecasting sequential web events and detecting web based anomalies. DeepEvent provides a context-based system for researchers and practitioners to better forecast web events with situational awareness.