Abstract:Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and misaligned mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or rule-based trajectory selection, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
Abstract:In many modern astronomical facilities, multi-object telescopes are crucial instruments. Most of these telescopes have thousands of robotic fiber positioners(RFPs) installed on their focal plane, sharing an overlapping workspace. Collisions between RFPs during their movement can result in some targets becoming unreachable and cause structural damage. Therefore, it is necessary to reasonably assess and evaluate the collision probability of the RFPs. In this study, we propose a mathematical models of collision probability and validate its results using Monte Carlo simulations. In addition, a new collision calculation method is proposed for faster calculation(nearly 0.15% of original time). Simulation experiments have verified that our method can evaluate the collision probability between RFPs with both equal and unequal arm lengths. Additionally, we found that adopting a target distribution based on a Poisson distribution can reduce the collision probability by approximately 2.6% on average.
Abstract:Trajectory prediction forecasts nearby agents' moves based on their historical trajectories. Accurate trajectory prediction is crucial for autonomous vehicles. Existing attacks compromise the prediction model of a victim AV by directly manipulating the historical trajectory of an attacker AV, which has limited real-world applicability. This paper, for the first time, explores an indirect attack approach that induces prediction errors via attacks against the perception module of a victim AV. Although it has been shown that physically realizable attacks against LiDAR-based perception are possible by placing a few objects at strategic locations, it is still an open challenge to find an object location from the vast search space in order to launch effective attacks against prediction under varying victim AV velocities. Through analysis, we observe that a prediction model is prone to an attack focusing on a single point in the scene. Consequently, we propose a novel two-stage attack framework to realize the single-point attack. The first stage of prediction-side attack efficiently identifies, guided by the distribution of detection results under object-based attacks against perception, the state perturbations for the prediction model that are effective and velocity-insensitive. In the second stage of location matching, we match the feasible object locations with the found state perturbations. Our evaluation using a public autonomous driving dataset shows that our attack causes a collision rate of up to 63% and various hazardous responses of the victim AV. The effectiveness of our attack is also demonstrated on a real testbed car. To the best of our knowledge, this study is the first security analysis spanning from LiDAR-based perception to prediction in autonomous driving, leading to a realistic attack on prediction. To counteract the proposed attack, potential defenses are discussed.
Abstract:Simulating realistic interactions among traffic agents is crucial for efficiently validating the safety of autonomous driving systems. Existing leading simulators primarily use an encoder-decoder structure to encode the historical trajectories for future simulation. However, such a paradigm complicates the model architecture, and the manual separation of history and future trajectories leads to low data utilization. To address these challenges, we propose Behavior Generative Pre-trained Transformers (BehaviorGPT), a decoder-only, autoregressive architecture designed to simulate the sequential motion of multiple agents. Crucially, our approach discards the traditional separation between "history" and "future," treating each time step as the "current" one, resulting in a simpler, more parameter- and data-efficient design that scales seamlessly with data and computation. Additionally, we introduce the Next-Patch Prediction Paradigm (NP3), which enables models to reason at the patch level of trajectories and capture long-range spatial-temporal interactions. BehaviorGPT ranks first across several metrics on the Waymo Sim Agents Benchmark, demonstrating its exceptional performance in multi-agent and agent-map interactions. We outperformed state-of-the-art models with a realism score of 0.741 and improved the minADE metric to 1.540, with an approximately 91.6% reduction in model parameters.
Abstract:The study of causal relationships between emotions and causes in texts has recently received much attention. Most works focus on extracting causally related clauses from documents. However, none of these works has considered that the causal relationships among the extracted emotion and cause clauses can only be valid under some specific context clauses. To highlight the context in such special causal relationships, we propose a new task to determine whether or not an input pair of emotion and cause has a valid causal relationship under different contexts and extract the specific context clauses that participate in the causal relationship. Since the task is new for which no existing dataset is available, we conduct manual annotation on a benchmark dataset to obtain the labels for our tasks and the annotations of each context clause's type that can also be used in some other applications. We adopt negative sampling to construct the final dataset to balance the number of documents with and without causal relationships. Based on the constructed dataset, we propose an end-to-end multi-task framework, where we design two novel and general modules to handle the two goals of our task. Specifically, we propose a context masking module to extract the context clauses participating in the causal relationships. We propose a prediction aggregation module to fine-tune the prediction results according to whether the input emotion and causes depend on specific context clauses. Results of extensive comparative experiments and ablation studies demonstrate the effectiveness and generality of our proposed framework.
Abstract:Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffraction limit. However, the technology requires coating conductive films on insulator samples and a vacuum environment. We use deep learning to obtain the mapping relationship between optical super-resolution (OSR) images and SEM domain images, which enables the transformation of OSR images into SEM-like large depth-of-field images. Our custom-built scanning superlens microscopy (SSUM) system, which requires neither coating samples by conductive films nor a vacuum environment, is used to acquire the OSR images with features down to ~80 nm. The peak signal-to-noise ratio (PSNR) and structural similarity index measure values indicate that the deep learning method performs excellently in image-to-image translation, with a PSNR improvement of about 0.74 dB over the optical super-resolution images. The proposed method provides a high level of detail in the reconstructed results, indicating that it has broad applicability to chip-level defect detection, biological sample analysis, forensics, and various other fields.
Abstract:Multi-modal fusion has shown initial promising results for object detection of autonomous driving perception. However, many existing fusion schemes do not consider the quality of each fusion input and may suffer from adverse conditions on one or more sensors. While predictive uncertainty has been applied to characterize single-modal object detection performance at run time, incorporating uncertainties into the multi-modal fusion still lacks effective solutions due primarily to the uncertainty's cross-modal incomparability and distinct sensitivities to various adverse conditions. To fill this gap, this paper proposes Uncertainty-Encoded Mixture-of-Experts (UMoE) that explicitly incorporates single-modal uncertainties into LiDAR-camera fusion. UMoE uses individual expert network to process each sensor's detection result together with encoded uncertainty. Then, the expert networks' outputs are analyzed by a gating network to determine the fusion weights. The proposed UMoE module can be integrated into any proposal fusion pipeline. Evaluation shows that UMoE achieves a maximum of 10.67%, 3.17%, and 5.40% performance gain compared with the state-of-the-art proposal-level multi-modal object detectors under extreme weather, adversarial, and blinding attack scenarios.
Abstract:Estimating the joint distribution of on-road agents' future trajectories is essential for autonomous driving. In this technical report, we propose a next-generation framework for joint multi-agent trajectory prediction called QCNeXt. First, we adopt the query-centric encoding paradigm for the task of joint multi-agent trajectory prediction. Powered by this encoding scheme, our scene encoder is equipped with permutation equivariance on the set elements, roto-translation invariance in the space dimension, and translation invariance in the time dimension. These invariance properties not only enable accurate multi-agent forecasting fundamentally but also empower the encoder with the capability of streaming processing. Second, we propose a multi-agent DETR-like decoder, which facilitates joint multi-agent trajectory prediction by modeling agents' interactions at future time steps. For the first time, we show that a joint prediction model can outperform marginal prediction models even on the marginal metrics, which opens up new research opportunities in trajectory prediction. Our approach ranks 1st on the Argoverse 2 multi-agent motion forecasting benchmark, winning the championship of the Argoverse Challenge at the CVPR 2023 Workshop on Autonomous Driving.
Abstract:Predicting the future trajectories of nearby objects plays a pivotal role in Robotics and Automation such as autonomous driving. While learning-based trajectory prediction methods have achieved remarkable performance on public benchmarks, the generalization ability of these approaches remains questionable. The poor generalizability on unseen domains, a well-recognized defect of data-driven approaches, can potentially harm the real-world performance of trajectory prediction models. We are thus motivated to improve generalization ability of models instead of merely pursuing high accuracy on average. Due to the lack of benchmarks for quantifying the generalization ability of trajectory predictors, we first construct a new benchmark called argoverse-shift, where the data distributions of domains are significantly different. Using this benchmark for evaluation, we identify that the domain shift problem seriously hinders the generalization of trajectory predictors since state-of-the-art approaches suffer from severe performance degradation when facing those out-of-distribution scenes. To enhance the robustness of models against domain shift problem, we propose a plug-and-play strategy for domain normalization in trajectory prediction. Our strategy utilizes the Frenet coordinate frame for modeling and can effectively narrow the domain gap of different scenes caused by the variety of road geometry and topology. Experiments show that our strategy noticeably boosts the prediction performance of the state-of-the-art in domains that were previously unseen to the models, thereby improving the generalization ability of data-driven trajectory prediction methods.
Abstract:In autonomous driving, an accurate understanding of environment, e.g., the vehicle-to-vehicle and vehicle-to-lane interactions, plays a critical role in many driving tasks such as trajectory prediction and motion planning. Environment information comes from high-definition (HD) map and historical trajectories of vehicles. Due to the heterogeneity of the map data and trajectory data, many data-driven models for trajectory prediction and motion planning extract vehicle-to-vehicle and vehicle-to-lane interactions in a separate and sequential manner. However, such a manner may capture biased interpretation of interactions, causing lower prediction and planning accuracy. Moreover, separate extraction leads to a complicated model structure and hence the overall efficiency and scalability are sacrificed. To address the above issues, we propose an environment representation, Temporal Occupancy Flow Graph (TOFG). Specifically, the occupancy flow-based representation unifies the map information and vehicle trajectories into a homogeneous data format and enables a consistent prediction. The temporal dependencies among vehicles can help capture the change of occupancy flow timely to further promote model performance. To demonstrate that TOFG is capable of simplifying the model architecture, we incorporate TOFG with a simple graph attention (GAT) based neural network and propose TOFG-GAT, which can be used for both trajectory prediction and motion planning. Experiment results show that TOFG-GAT achieves better or competitive performance than all the SOTA baselines with less training time.