University of California, Los Angeles, USA
Abstract:Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
Abstract:Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
Abstract:Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
Abstract:This paper introduces a holistic vision-language foundation model tailored for remote sensing, named Falcon. Falcon offers a unified, prompt-based paradigm that effectively executes comprehensive and complex remote sensing tasks. Falcon demonstrates powerful understanding and reasoning abilities at the image, region, and pixel levels. Specifically, given simple natural language instructions and remote sensing images, Falcon can produce impressive results in text form across 14 distinct tasks, i.e., image classification, object detection, segmentation, image captioning, and etc. To facilitate Falcon's training and empower its representation capacity to encode rich spatial and semantic information, we developed Falcon_SFT, a large-scale, multi-task, instruction-tuning dataset in the field of remote sensing. The Falcon_SFT dataset consists of approximately 78 million high-quality data samples, covering 5.6 million multi-spatial resolution and multi-view remote sensing images with diverse instructions. It features hierarchical annotations and undergoes manual sampling verification to ensure high data quality and reliability. Extensive comparative experiments are conducted, which verify that Falcon achieves remarkable performance over 67 datasets and 14 tasks, despite having only 0.7B parameters. We release the complete dataset, code, and model weights at https://github.com/TianHuiLab/Falcon, hoping to help further develop the open-source community.
Abstract:Conventional multi-source domain few-shot adaptation (MFDA) faces the challenge of further reducing the load on edge-side devices in low-resource scenarios. Considering the native language-supervised advantage of CLIP and the plug-and-play nature of prompt to transfer CLIP efficiently, this paper introduces an uploadable multi-source few-shot domain adaptation (UMFDA) schema. It belongs to a decentralized edge collaborative learning in the edge-side models that must maintain a low computational load. And only a limited amount of annotations in source domain data is provided, with most of the data being unannotated. Further, this paper proposes a vision-aware multimodal prompt tuning framework (VAMP) under the decentralized schema, where the vision-aware prompt guides the text domain-specific prompt to maintain semantic discriminability and perceive the domain information. The cross-modal semantic and domain distribution alignment losses optimize each edge-side model, while text classifier consistency and semantic diversity losses promote collaborative learning among edge-side models. Extensive experiments were conducted on OfficeHome and DomainNet datasets to demonstrate the effectiveness of the proposed VAMP in the UMFDA, which outperformed the previous prompt tuning methods.
Abstract:Current neural networks often employ multi-domain-learning or attribute-injecting mechanisms to incorporate non-independent and identically distributed (non-IID) information for text understanding tasks by capturing individual characteristics and the relationships among samples. However, the extent of the impact of non-IID information and how these methods affect pre-trained language models (PLMs) remains unclear. This study revisits the assumption that non-IID information enhances PLMs to achieve performance improvements from a Bayesian perspective, which unearths and integrates non-IID and IID features. Furthermore, we proposed a multi-attribute multi-grained framework for PLM adaptations (M2A), which combines multi-attribute and multi-grained views to mitigate uncertainty in a lightweight manner. We evaluate M2A through prevalent text-understanding datasets and demonstrate its superior performance, mainly when data are implicitly non-IID, and PLMs scale larger.
Abstract:Federated learning (FL) enables decentralized clients to collaboratively train a global model under the orchestration of a central server without exposing their individual data. However, the iterative exchange of model parameters between the server and clients imposes heavy communication burdens, risks potential privacy leakage, and even precludes collaboration among heterogeneous clients. Distillation-based FL tackles these challenges by exchanging low-dimensional model outputs rather than model parameters, yet it highly relies on a task-relevant auxiliary dataset that is often not available in practice. Data-free FL attempts to overcome this limitation by training a server-side generator to directly synthesize task-specific data samples for knowledge transfer. However, the update rule of the generator requires clients to share on-device models for white-box access, which greatly compromises the advantages of distillation-based FL. This motivates us to explore a data-free and black-box FL framework via Zeroth-order Gradient Estimation (FedZGE), which estimates the gradients after flowing through on-device models in a black-box optimization manner to complete the training of the generator in terms of fidelity, transferability, diversity, and equilibrium, without involving any auxiliary data or sharing any model parameters, thus combining the advantages of both distillation-based FL and data-free FL. Experiments on large-scale image classification datasets and network architectures demonstrate the superiority of FedZGE in terms of data heterogeneity, model heterogeneity, communication efficiency, and privacy protection.
Abstract:Large language models (LLMs) have achieved outstanding performance in natural language processing, but enormous model sizes and high computational costs limit their practical deployment. Structured pruning can effectively reduce the resource demands for deployment by removing redundant model parameters. However, the randomly selected calibration data and fixed single importance estimation metrics in existing structured pruning methods lead to degraded performance of pruned models. This study introduces AdaPruner, a sample-aware adaptive structured pruning framework for LLMs, aiming to optimize the calibration data and importance estimation metrics in the structured pruning process. Specifically, AdaPruner effectively removes redundant parameters from LLMs by constructing a structured pruning solution space and then employing Bayesian optimization to adaptively search for the optimal calibration data and importance estimation metrics. Experimental results show that the AdaPruner outperforms existing structured pruning methods on a family of LLMs with varying pruning ratios, demonstrating its applicability and robustness. Remarkably, at a 20\% pruning ratio, the model pruned with AdaPruner maintains 97\% of the performance of the unpruned model.
Abstract:Millimeter-wave (mmWave) radar has attracted significant attention in robotics and autonomous driving. However, despite the perception stability in harsh environments, the point cloud generated by mmWave radar is relatively sparse while containing significant noise, which limits its further development. Traditional mmWave radar enhancement approaches often struggle to leverage the effectiveness of diffusion models in super-resolution, largely due to the unnatural range-azimuth heatmap (RAH) or bird's eye view (BEV) representation. To overcome this limitation, we propose a novel method that pioneers the application of fusing range images with image diffusion models, achieving accurate and dense mmWave radar point clouds that are similar to LiDAR. Benefitting from the projection that aligns with human observation, the range image representation of mmWave radar is close to natural images, allowing the knowledge from pre-trained image diffusion models to be effectively transferred, significantly improving the overall performance. Extensive evaluations on both public datasets and self-constructed datasets demonstrate that our approach provides substantial improvements, establishing a new state-of-the-art performance in generating truly three-dimensional LiDAR-like point clouds via mmWave radar.
Abstract:From early Movement Primitive (MP) techniques to modern Vision-Language Models (VLMs), autonomous manipulation has remained a pivotal topic in robotics. As two extremes, VLM-based methods emphasize zero-shot and adaptive manipulation but struggle with fine-grained planning. In contrast, MP-based approaches excel in precise trajectory generalization but lack decision-making ability. To leverage the strengths of the two frameworks, we propose VL-MP, which integrates VLM with Kernelized Movement Primitives (KMP) via a low-distortion decision information transfer bridge, enabling fine-grained robotic manipulation under ambiguous situations. One key of VL-MP is the accurate representation of task decision parameters through semantic keypoints constraints, leading to more precise task parameter generation. Additionally, we introduce a local trajectory feature-enhanced KMP to support VL-MP, thereby achieving shape preservation for complex trajectories. Extensive experiments conducted in complex real-world environments validate the effectiveness of VL-MP for adaptive and fine-grained manipulation.