University of California, Los Angeles, USA
Abstract:Semi-supervised learning holds a pivotal position in anomaly detection applications, yet identifying anomaly patterns with a limited number of labeled samples poses a significant challenge. Furthermore, the absence of interpretability poses major obstacles to the practical adoption of semi-supervised frameworks. The majority of existing interpretation techniques are tailored for supervised/unsupervised frameworks or non-security domains, falling short in providing dependable interpretations. In this research paper, we introduce SADDE, a general framework designed to accomplish two primary objectives: (1) to render the anomaly detection process interpretable and enhance the credibility of interpretation outcomes, and (2) to assign high-confidence pseudo labels to unlabeled samples, thereby boosting the performance of anomaly detection systems when supervised data is scarce. To achieve the first objective, we devise a cutting-edge interpretation method that utilizes both global and local interpreters to furnish trustworthy explanations. For the second objective, we conceptualize a novel two-stage semi-supervised learning framework tailored for network anomaly detection, ensuring that the model predictions of both stages align with specific constraints. We apply SADDE to two illustrative network anomaly detection tasks and conduct extensive evaluations in comparison with notable prior works. The experimental findings underscore that SADDE is capable of delivering precise detection results alongside dependable interpretations for semi-supervised network anomaly detection systems. The source code for SADDE is accessible at: https://github.com/M-Code-Space/SADDE.
Abstract:Tractography fiber clustering using diffusion MRI (dMRI) is a crucial strategy for white matter (WM) parcellation. Current methods primarily use the geometric information of fibers (i.e., the spatial trajectories) to group similar fibers into clusters, overlooking the important functional signals present along the fiber tracts. There is increasing evidence that neural activity in the WM can be measured using functional MRI (fMRI), offering potentially valuable multimodal information for fiber clustering. In this paper, we develop a novel deep learning fiber clustering framework, namely Deep Multi-view Fiber Clustering (DMVFC), that uses joint dMRI and fMRI data to enable functionally consistent WM parcellation. DMVFC can effectively integrate the geometric characteristics of the WM fibers with the fMRI BOLD signals along the fiber tracts. It includes two major components: 1) a multi-view pretraining module to compute embedding features from fiber geometric information and functional signals separately, and 2) a collaborative fine-tuning module to simultaneously refine the two kinds of embeddings. In the experiments, we compare DMVFC with two state-of-the-art fiber clustering methods and demonstrate superior performance in achieving functionally meaningful and consistent WM parcellation results.
Abstract:The proliferation of the Internet of Things (IoT) has heightened the vulnerability to cyber threats, making it imperative to develop Anomaly Detection Systems (ADSs) capable of adapting to emerging or novel attacks. Prior research has predominantly concentrated on offline unsupervised learning techniques to protect ADSs, which are impractical for real-world applications. Furthermore, these studies often rely heavily on the assumption of known legitimate behaviors and fall short of meeting the interpretability requirements in security contexts, thereby hindering their practical adoption. In response, this paper introduces Adaptive NAD, a comprehensive framework aimed at enhancing and interpreting online unsupervised anomaly detection within security domains. We propose an interpretable two-layer anomaly detection approach that generates dependable, high-confidence pseudo-labels. Subsequently, we incorporate an online learning mechanism that updates Adaptive NAD using an innovative threshold adjustment method to accommodate new threats. Experimental findings reveal that Adaptive NAD surpasses state-of-the-art solutions by achieving improvements of over 5.4% and 23.0% in SPAUC on the CIC-Darknet2020 and CIC-DoHBrw-2020 datasets, respectively. The code for Adaptive NAD is publicly available at https://github.com/MyLearnCodeSpace/Adaptive-NAD.
Abstract:Chain-of-Thought (CoT) has become a vital technique for enhancing the performance of Large Language Models (LLMs), attracting increasing attention from researchers. One stream of approaches focuses on the iterative enhancement of LLMs by continuously verifying and refining their reasoning outputs for desired quality. Despite its impressive results, this paradigm faces two critical issues: (1) Simple verification methods: The current paradigm relies solely on a single verification method. (2) Wrong Information Ignorance: Traditional paradigms directly ignore wrong information during reasoning and refine the logic paths from scratch each time. To address these challenges, we propose Wrong-of-Thought (WoT), which includes two core modules: (1) Multi-Perspective Verification: A multi-perspective verification method for accurately refining the reasoning process and result, and (2) Wrong Information Utilization: Utilizing wrong information to alert LLMs and reduce the probability of LLMs making same mistakes. Experiments on 8 popular datasets and 5 LLMs demonstrate that WoT surpasses all previous baselines. In addition, WoT exhibits powerful capabilities in difficult computation tasks.
Abstract:In modern healthcare, the demand for autonomous robotic assistants has grown significantly, particularly in the operating room, where surgical tasks require precision and reliability. Robotic scrub nurses have emerged as a promising solution to improve efficiency and reduce human error during surgery. However, challenges remain in terms of accurately grasping and handing over surgical instruments, especially when dealing with complex or difficult objects in dynamic environments. In this work, we introduce a novel robotic scrub nurse system, RoboNurse-VLA, built on a Vision-Language-Action (VLA) model by integrating the Segment Anything Model 2 (SAM 2) and the Llama 2 language model. The proposed RoboNurse-VLA system enables highly precise grasping and handover of surgical instruments in real-time based on voice commands from the surgeon. Leveraging state-of-the-art vision and language models, the system can address key challenges for object detection, pose optimization, and the handling of complex and difficult-to-grasp instruments. Through extensive evaluations, RoboNurse-VLA demonstrates superior performance compared to existing models, achieving high success rates in surgical instrument handovers, even with unseen tools and challenging items. This work presents a significant step forward in autonomous surgical assistance, showcasing the potential of integrating VLA models for real-world medical applications. More details can be found at https://robonurse-vla.github.io.
Abstract:Humanoid robots with behavioral autonomy have consistently been regarded as ideal collaborators in our daily lives and promising representations of embodied intelligence. Compared to fixed-based robotic arms, humanoid robots offer a larger operational space while significantly increasing the difficulty of control and planning. Despite the rapid progress towards general-purpose humanoid robots, most studies remain focused on locomotion ability with few investigations into whole-body coordination and tasks planning, thus limiting the potential to demonstrate long-horizon tasks involving both mobility and manipulation under open-ended verbal instructions. In this work, we propose a novel framework that learns, selects, and plans behaviors based on tasks in different scenarios. We combine reinforcement learning (RL) with whole-body optimization to generate robot motions and store them into a motion library. We further leverage the planning and reasoning features of the large language model (LLM), constructing a hierarchical task graph that comprises a series of motion primitives to bridge lower-level execution with higher-level planning. Experiments in simulation and real-world using the CENTAURO robot show that the language model based planner can efficiently adapt to new loco-manipulation tasks, demonstrating high autonomy from free-text commands in unstructured scenes.
Abstract:With the rapid growth of global e-commerce, the demand for automation in the logistics industry is increasing. This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies to enhance picking efficiency and accuracy while reducing system failure rates. Through empirical analysis, we demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments. The results show that the integrated machine learning model significantly outperforms traditional methods, effectively addressing the challenges of peak order processing, reducing operational errors, and improving overall logistics efficiency. Additionally, by analyzing environmental factors, this study further optimizes system design to ensure efficient and stable operation under variable conditions. This research not only provides innovative solutions for logistics automation but also offers a theoretical and empirical foundation for future technological development and application.
Abstract:Detecting semantic types of columns in data lake tables is an important application. A key bottleneck in semantic type detection is the availability of human annotation due to the inherent complexity of data lakes. In this paper, we propose using programmatic weak supervision to assist in annotating the training data for semantic type detection by leveraging labeling functions. One challenge in this process is the difficulty of manually writing labeling functions due to the large volume and low quality of the data lake table datasets. To address this issue, we explore employing Large Language Models (LLMs) for labeling function generation and introduce several prompt engineering strategies for this purpose. We conduct experiments on real-world web table datasets. Based on the initial results, we perform extensive analysis and provide empirical insights and future directions for researchers in this field.
Abstract:Diffusion models have demonstrated superior performance in the field of portrait animation. However, current approaches relied on either visual or audio modality to control character movements, failing to exploit the potential of mixed-modal control. This challenge arises from the difficulty in balancing the weak control strength of audio modality and the strong control strength of visual modality. To address this issue, we introduce MegActor-$\Sigma$: a mixed-modal conditional diffusion transformer (DiT), which can flexibly inject audio and visual modality control signals into portrait animation. Specifically, we make substantial advancements over its predecessor, MegActor, by leveraging the promising model structure of DiT and integrating audio and visual conditions through advanced modules within the DiT framework. To further achieve flexible combinations of mixed-modal control signals, we propose a ``Modality Decoupling Control" training strategy to balance the control strength between visual and audio modalities, along with the ``Amplitude Adjustment" inference strategy to freely regulate the motion amplitude of each modality. Finally, to facilitate extensive studies in this field, we design several dataset evaluation metrics to filter out public datasets and solely use this filtered dataset to train MegActor-$\Sigma$. Extensive experiments demonstrate the superiority of our approach in generating vivid portrait animations, outperforming previous methods trained on private dataset.
Abstract:Class imbalance significantly impacts the performance of multi-label classifiers. Oversampling is one of the most popular approaches, as it augments instances associated with less frequent labels to balance the class distribution. Existing oversampling methods generate feature vectors of synthetic samples through replication or linear interpolation and assign labels through neighborhood information. Linear interpolation typically generates new samples between existing data points, which may result in insufficient diversity of synthesized samples and further lead to the overfitting issue. Deep learning-based methods, such as AutoEncoders, have been proposed to generate more diverse and complex synthetic samples, achieving excellent performance on imbalanced binary or multi-class datasets. In this study, we introduce AEMLO, an AutoEncoder-guided Oversampling technique specifically designed for tackling imbalanced multi-label data. AEMLO is built upon two fundamental components. The first is an encoder-decoder architecture that enables the model to encode input data into a low-dimensional feature space, learn its latent representations, and then reconstruct it back to its original dimension, thus applying to the generation of new data. The second is an objective function tailored to optimize the sampling task for multi-label scenarios. We show that AEMLO outperforms the existing state-of-the-art methods with extensive empirical studies.