Abstract:With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
Abstract:While current humanoid whole-body control frameworks predominantly rely on the static environment assumptions, addressing tasks characterized by high dynamism and complex interactions presents a formidable challenge. In this paper, we address humanoid skateboarding, a highly challenging task requiring stable dynamic maneuvering on an underactuated wheeled platform. This integrated system is governed by non-holonomic constraints and tightly coupled human-object interactions. Successfully executing this task requires simultaneous mastery of hybrid contact dynamics and robust balance control on a mechanically coupled, dynamically unstable skateboard. To overcome the aforementioned challenges, we propose HUSKY, a learning-based framework that integrates humanoid-skateboard system modeling and physics-aware whole-body control. We first model the coupling relationship between board tilt and truck steering angles, enabling a principled analysis of system dynamics. Building upon this, HUSKY leverages Adversarial Motion Priors (AMP) to learn human-like pushing motions and employs a physics-guided, heading-oriented strategy for lean-to-steer behaviors. Moreover, a trajectory-guided mechanism ensures smooth and stable transitions between pushing and steering. Experimental results on the Unitree G1 humanoid platform demonstrate that our framework enables stable and agile maneuvering on skateboards in real-world scenarios. The project page is available on https://husky-humanoid.github.io/.
Abstract:Autoregressive models with continuous tokens form a promising paradigm for visual generation, especially for text-to-image (T2I) synthesis, but they suffer from high computational cost. We study how to design compute-efficient linear attention within this framework. Specifically, we conduct a systematic empirical analysis of scaling behavior with respect to parameter counts under different design choices, focusing on (1) normalization paradigms in linear attention (division-based vs. subtraction-based) and (2) depthwise convolution for locality augmentation. Our results show that although subtraction-based normalization is effective for image classification, division-based normalization scales better for linear generative transformers. In addition, incorporating convolution for locality modeling plays a crucial role in autoregressive generation, consistent with findings in diffusion models. We further extend gating mechanisms, commonly used in causal linear attention, to the bidirectional setting and propose a KV gate. By introducing data-independent learnable parameters to the key and value states, the KV gate assigns token-wise memory weights, enabling flexible memory management similar to forget gates in language models. Based on these findings, we present LINA, a simple and compute-efficient T2I model built entirely on linear attention, capable of generating high-fidelity 1024x1024 images from user instructions. LINA achieves competitive performance on both class-conditional and T2I benchmarks, obtaining 2.18 FID on ImageNet (about 1.4B parameters) and 0.74 on GenEval (about 1.5B parameters). A single linear attention module reduces FLOPs by about 61 percent compared to softmax attention. Code and models are available at: https://github.com/techmonsterwang/LINA.
Abstract:Recent advancements in multimodal large language models and vision-languageaction models have significantly driven progress in Embodied AI. As the field transitions toward more complex task scenarios, multi-agent system frameworks are becoming essential for achieving scalable, efficient, and collaborative solutions. This shift is fueled by three primary factors: increasing agent capabilities, enhancing system efficiency through task delegation, and enabling advanced human-agent interactions. To address the challenges posed by multi-agent collaboration, we propose the Multi-Agent Robotic System (MARS) Challenge, held at the NeurIPS 2025 Workshop on SpaVLE. The competition focuses on two critical areas: planning and control, where participants explore multi-agent embodied planning using vision-language models (VLMs) to coordinate tasks and policy execution to perform robotic manipulation in dynamic environments. By evaluating solutions submitted by participants, the challenge provides valuable insights into the design and coordination of embodied multi-agent systems, contributing to the future development of advanced collaborative AI systems.
Abstract:Active learning (AL) strategies aim to train high-performance models with minimal labeling efforts, only selecting the most informative instances for annotation. Current approaches to evaluating data informativeness predominantly focus on the data's distribution or intrinsic information content and do not directly correlate with downstream task performance, such as mean average precision (mAP) in object detection. Thus, we propose Performance-guided (i.e. mAP-guided) Reinforced Active Learning for Object Detection (MGRAL), a novel approach that leverages the concept of expected model output changes as informativeness. To address the combinatorial explosion challenge of batch sample selection and the non-differentiable correlation between model performance and selected batches, MGRAL skillfully employs a reinforcement learning-based sampling agent that optimizes selection using policy gradient with mAP improvement as reward. Moreover, to reduce the computational overhead of mAP estimation with unlabeled samples, MGRAL utilizes an unsupervised way with fast look-up tables, ensuring feasible deployment. We evaluate MGRAL's active learning performance on detection tasks over PASCAL VOC and COCO benchmarks. Our approach demonstrates the highest AL curve with convincing visualizations, establishing a new paradigm in reinforcement learning-driven active object detection.
Abstract:Recent large vision-language models (LVLMs) have demonstrated strong potential for device control. However, existing research has primarily focused on point-and-click (PnC) interaction, while remote-control (RC) interaction commonly encountered in everyday TV usage remains largely underexplored. To fill this gap, we introduce \textbf{TVWorld}, an offline graph-based abstraction of real-world TV navigation that enables reproducible and deployment-free evaluation. On this basis, we derive two complementary benchmarks that comprehensively assess TV-use capabilities: \textbf{TVWorld-N} for topology-aware navigation and \textbf{TVWorld-G} for focus-aware grounding. These benchmarks expose a key limitation of existing agents: insufficient topology awareness for focus-based, long-horizon TV navigation. Motivated by this finding, we propose a \emph{Topology-Aware Training} framework that injects topology awareness into LVLMs. Using this framework, we develop \textbf{TVTheseus}, a foundation model specialized for TV navigation. TVTheseus achieves a success rate of $68.3\%$ on TVWorld-N, surpassing strong closed-source baselines such as Gemini 3 Flash and establishing state-of-the-art (SOTA) performance. Additional analyses further provide valuable insights into the development of effective TV-use agents.
Abstract:Generating high-quality 3D characters from single images remains a significant challenge in digital content creation, particularly due to complex body poses and self-occlusion. In this paper, we present RCM (Rotate your Character Model), an advanced image-to-video diffusion framework tailored for high-quality novel view synthesis (NVS) and 3D character generation. Compared to existing diffusion-based approaches, RCM offers several key advantages: (1) transferring characters with any complex poses into a canonical pose, enabling consistent novel view synthesis across the entire viewing orbit, (2) high-resolution orbital video generation at 1024x1024 resolution, (3) controllable observation positions given different initial camera poses, and (4) multi-view conditioning supporting up to 4 input images, accommodating diverse user scenarios. Extensive experiments demonstrate that RCM outperforms state-of-the-art methods in both novel view synthesis and 3D generation quality.
Abstract:Recent studies have demonstrated the efficacy of integrating Group Relative Policy Optimization (GRPO) into flow matching models, particularly for text-to-image and text-to-video generation. However, we find that directly applying these techniques to image-to-video (I2V) models often fails to yield consistent reward improvements. To address this limitation, we present TAGRPO, a robust post-training framework for I2V models inspired by contrastive learning. Our approach is grounded in the observation that rollout videos generated from identical initial noise provide superior guidance for optimization. Leveraging this insight, we propose a novel GRPO loss applied to intermediate latents, encouraging direct alignment with high-reward trajectories while maximizing distance from low-reward counterparts. Furthermore, we introduce a memory bank for rollout videos to enhance diversity and reduce computational overhead. Despite its simplicity, TAGRPO achieves significant improvements over DanceGRPO in I2V generation.
Abstract:Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, yet its stability is fundamentally challenged by statistical heterogeneity in realistic deployments. Here, we show that client heterogeneity destabilizes FL primarily by distorting local gradient dynamics during client-side optimization, causing systematic drift that accumulates across communication rounds and impedes global convergence. This observation highlights local gradients as a key regulatory lever for stabilizing heterogeneous FL systems. Building on this insight, we develop a general client-side perspective that regulates local gradient contributions without incurring additional communication overhead. Inspired by swarm intelligence, we instantiate this perspective through Exploratory--Convergent Gradient Re-aggregation (ECGR), which balances well-aligned and misaligned gradient components to preserve informative updates while suppressing destabilizing effects. Theoretical analysis and extensive experiments, including evaluations on the LC25000 medical imaging dataset, demonstrate that regulating local gradient dynamics consistently stabilizes federated learning across state-of-the-art methods under heterogeneous data distributions.
Abstract:Symbolic world models (e.g., PDDL domains or executable simulators) are central to model-based planning, but training LLMs to generate such world models is limited by the lack of large-scale verifiable supervision. Current approaches rely primarily on static validation methods that fail to catch behavior-level errors arising from interactive execution. In this paper, we propose Agent2World, a tool-augmented multi-agent framework that achieves strong inference-time world-model generation and also serves as a data engine for supervised fine-tuning, by grounding generation in multi-agent feedback. Agent2World follows a three-stage pipeline: (i) A Deep Researcher agent performs knowledge synthesis by web searching to address specification gaps; (ii) A Model Developer agent implements executable world models; And (iii) a specialized Testing Team conducts adaptive unit testing and simulation-based validation. Agent2World demonstrates superior inference-time performance across three benchmarks spanning both Planning Domain Definition Language (PDDL) and executable code representations, achieving consistent state-of-the-art results. Beyond inference, Testing Team serves as an interactive environment for the Model Developer, providing behavior-aware adaptive feedback that yields multi-turn training trajectories. The model fine-tuned on these trajectories substantially improves world-model generation, yielding an average relative gain of 30.95% over the same model before training. Project page: https://agent2world.github.io.