Abstract:Recently, the success of Text-to-Image (T2I) models has led to the rise of numerous third-party platforms, which claim to provide cheaper API services and more flexibility in model options. However, this also raises a new security concern: Are these third-party services truly offering the models they claim? To address this problem, we propose the first T2I model verification method named Text-to-Image Model Verification via Non-Transferable Adversarial Attacks (TVN). The non-transferability of adversarial examples means that these examples are only effective on a target model and ineffective on other models, thereby allowing for the verification of the target model. TVN utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize the cosine similarity of a prompt's text encoding, generating non-transferable adversarial prompts. By calculating the CLIP-text scores between the non-transferable adversarial prompts without perturbations and the images, we can verify if the model matches the claimed target model, based on a 3-sigma threshold. The experiments showed that TVN performed well in both closed-set and open-set scenarios, achieving a verification accuracy of over 90\%. Moreover, the adversarial prompts generated by TVN significantly reduced the CLIP-text scores of the target model, while having little effect on other models.
Abstract:Vision Transformers (ViTs) have outperformed traditional Convolutional Neural Networks (CNN) across various computer vision tasks. However, akin to CNN, ViTs are vulnerable to backdoor attacks, where the adversary embeds the backdoor into the victim model, causing it to make wrong predictions about testing samples containing a specific trigger. Existing backdoor attacks against ViTs have the limitation of failing to strike an optimal balance between attack stealthiness and attack effectiveness. In this work, we propose an Attention Gradient-based Erosion Backdoor (AGEB) targeted at ViTs. Considering the attention mechanism of ViTs, AGEB selectively erodes pixels in areas of maximal attention gradient, embedding a covert backdoor trigger. Unlike previous backdoor attacks against ViTs, AGEB achieves an optimal balance between attack stealthiness and attack effectiveness, ensuring the trigger remains invisible to human detection while preserving the model's accuracy on clean samples. Extensive experimental evaluations across various ViT architectures and datasets confirm the effectiveness of AGEB, achieving a remarkable Attack Success Rate (ASR) without diminishing Clean Data Accuracy (CDA). Furthermore, the stealthiness of AGEB is rigorously validated, demonstrating minimal visual discrepancies between the clean and the triggered images.
Abstract:Deep-learning methods have shown promising performance for low-dose computed tomography (LDCT) reconstruction. However, supervised methods face the problem of lacking labeled data in clinical scenarios, and the CNN-based unsupervised denoising methods would cause excessive smoothing in the reconstructed image. Recently, the normalizing flows (NFs) based methods have shown advantages in producing detail-rich images and avoiding over-smoothing, however, there are still issues: (1) Although the alternating optimization in the data and latent space can well utilize the regularization and generation capabilities of NFs, the current two-way transformation strategy of noisy images and latent variables would cause detail loss and secondary artifacts; and (2) Training NFs on high-resolution CT images is hard due to huge computation. Though using conditional normalizing flows (CNFs) to learn conditional probability can reduce the computational burden, current methods require labeled data for conditionalization, and the unsupervised CNFs-based LDCT reconstruction remains a problem. To tackle these problems, we propose a novel CNFs-based unsupervised LDCT iterative reconstruction algorithm. It employs strict one-way transformation when performing alternating optimization in the dual spaces, thus effectively avoiding the problems of detail loss and secondary artifacts. By proposing a novel unsupervised conditionalization strategy, we train CNFs on high-resolution CT images, thus achieving fast and high-quality unsupervised reconstruction. Experiments on different datasets suggest that the performance of the proposed algorithm could surpass some state-of-the-art unsupervised and even supervised methods.
Abstract:Low-dose computed tomography (LDCT) offers significant advantages in reducing the potential harm to human bodies. However, reducing the X-ray dose in CT scanning often leads to severe noise and artifacts in the reconstructed images, which might adversely affect diagnosis. By utilizing the expectation maximization (EM) algorithm, statistical priors could be combined with artificial priors to improve LDCT reconstruction quality. However, conventional EM-based regularization methods adopt an alternating solving strategy, i.e. full reconstruction followed by image-regularization, resulting in over-smoothing and slow convergence. In this paper, we propose to integrate TV regularization into the ``M''-step of the EM algorithm, thus achieving effective and efficient regularization. Besides, by employing the Chambolle-Pock (CP) algorithm and the ordered subset (OS) strategy, we propose the OSEM-CP algorithm for LDCT reconstruction, in which both reconstruction and regularization are conducted view-by-view. Furthermore, by unrolling OSEM-CP, we propose an end-to-end reconstruction neural network (NN), named OSEM-CPNN, with remarkable performance and efficiency that achieves high-quality reconstructions in just one full-view iteration. Experiments on different models and datasets demonstrate our methods' outstanding performance compared to traditional and state-of-the-art deep-learning methods.
Abstract:The persistent challenge of medical image synthesis posed by the scarcity of annotated data and the need to synthesize `missing modalities' for multi-modal analysis, underscored the imperative development of effective synthesis methods. Recently, the combination of Low-Rank Adaptation (LoRA) with latent diffusion models (LDMs) has emerged as a viable approach for efficiently adapting pre-trained large language models, in the medical field. However, the direct application of LoRA assumes uniform ranking across all linear layers, overlooking the significance of different weight matrices, and leading to sub-optimal outcomes. Prior works on LoRA prioritize the reduction of trainable parameters, and there exists an opportunity to further tailor this adaptation process to the intricate demands of medical image synthesis. In response, we present SeLoRA, a Self-Expanding Low-Rank Adaptation Module, that dynamically expands its ranking across layers during training, strategically placing additional ranks on crucial layers, to allow the model to elevate synthesis quality where it matters most. The proposed method not only enables LDMs to fine-tune on medical data efficiently but also empowers the model to achieve improved image quality with minimal ranking. The code of our SeLoRA method is publicly available on https://anonymous.4open.science/r/SeLoRA-980D .
Abstract:Many parts of human body generate internal sound during biological processes, which are rich sources of information for understanding health and wellbeing. Despite a long history of development and usage of stethoscopes, there is still a lack of proper tools for recording internal body sound together with complementary sensors for long term monitoring. In this paper, we show our development of a wearable electronic stethoscope, coined Patchkeeper (PK), that can be used for internal body sound recording over long periods of time. Patchkeeper also integrates several state-of-the-art biological sensors, including electrocardiogram (ECG), photoplethysmography (PPG), and inertial measurement unit (IMU) sensors. As a wearable device, Patchkeeper can be placed on various parts of the body to collect sound from particular organs, including heart, lung, stomach, and joints etc. We show in this paper that several vital signals can be recorded simultaneously with high quality. As Patchkeeper can be operated directly by the user, e.g. without involving health care professionals, we believe it could be a useful tool for telemedicine and remote diagnostics.
Abstract:Deep neural networks (DNNs) have achieved significant success in numerous applications. The remarkable performance of DNNs is largely attributed to the availability of massive, high-quality training datasets. However, processing such massive training data requires huge computational and storage resources. Dataset distillation is a promising solution to this problem, offering the capability to compress a large dataset into a smaller distilled dataset. The model trained on the distilled dataset can achieve comparable performance to the model trained on the whole dataset. While dataset distillation has been demonstrated in image data, none have explored dataset distillation for audio data. In this work, for the first time, we propose a Dataset Distillation Framework for Audio Data (DDFAD). Specifically, we first propose the Fused Differential MFCC (FD-MFCC) as extracted features for audio data. After that, the FD-MFCC is distilled through the matching training trajectory distillation method. Finally, we propose an audio signal reconstruction algorithm based on the Griffin-Lim Algorithm to reconstruct the audio signal from the distilled FD-MFCC. Extensive experiments demonstrate the effectiveness of DDFAD on various audio datasets. In addition, we show that DDFAD has promising application prospects in many applications, such as continual learning and neural architecture search.
Abstract:Recently, deep learning-based Image-to-Image (I2I) networks have become the predominant choice for I2I tasks such as image super-resolution and denoising. Despite their remarkable performance, the backdoor vulnerability of I2I networks has not been explored. To fill this research gap, we conduct a comprehensive investigation on the susceptibility of I2I networks to backdoor attacks. Specifically, we propose a novel backdoor attack technique, where the compromised I2I network behaves normally on clean input images, yet outputs a predefined image of the adversary for malicious input images containing the trigger. To achieve this I2I backdoor attack, we propose a targeted universal adversarial perturbation (UAP) generation algorithm for I2I networks, where the generated UAP is used as the backdoor trigger. Additionally, in the backdoor training process that contains the main task and the backdoor task, multi-task learning (MTL) with dynamic weighting methods is employed to accelerate convergence rates. In addition to attacking I2I tasks, we extend our I2I backdoor to attack downstream tasks, including image classification and object detection. Extensive experiments demonstrate the effectiveness of the I2I backdoor on state-of-the-art I2I network architectures, as well as the robustness against different mainstream backdoor defenses.
Abstract:Gliomas are the most common malignant primary brain tumors in adults and one of the deadliest types of cancer. There are many challenges in treatment and monitoring due to the genetic diversity and high intrinsic heterogeneity in appearance, shape, histology, and treatment response. Treatments include surgery, radiation, and systemic therapies, with magnetic resonance imaging (MRI) playing a key role in treatment planning and post-treatment longitudinal assessment. The 2024 Brain Tumor Segmentation (BraTS) challenge on post-treatment glioma MRI will provide a community standard and benchmark for state-of-the-art automated segmentation models based on the largest expert-annotated post-treatment glioma MRI dataset. Challenge competitors will develop automated segmentation models to predict four distinct tumor sub-regions consisting of enhancing tissue (ET), surrounding non-enhancing T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity (SNFH), non-enhancing tumor core (NETC), and resection cavity (RC). Models will be evaluated on separate validation and test datasets using standardized performance metrics utilized across the BraTS 2024 cluster of challenges, including lesion-wise Dice Similarity Coefficient and Hausdorff Distance. Models developed during this challenge will advance the field of automated MRI segmentation and contribute to their integration into clinical practice, ultimately enhancing patient care.
Abstract:Mainstream poisoning attacks on large language models (LLMs) typically set a fixed trigger in the input instance and specific responses for triggered queries. However, the fixed trigger setting (e.g., unusual words) may be easily detected by human detection, limiting the effectiveness and practicality in real-world scenarios. To enhance the stealthiness of the trigger, we present a poisoning attack against LLMs that is triggered by a generation/output condition-token limitation, which is a commonly adopted strategy by users for reducing costs. The poisoned model performs normally for output without token limitation, while becomes harmful for output with limited tokens. To achieve this objective, we introduce BrieFool, an efficient attack framework. It leverages the characteristics of generation limitation by efficient instruction sampling and poisoning data generation, thereby influencing the behavior of LLMs under target conditions. Our experiments demonstrate that BrieFool is effective across safety domains and knowledge domains. For instance, with only 20 generated poisoning examples against GPT-3.5-turbo, BrieFool achieves a 100% Attack Success Rate (ASR) and a 9.28/10 average Harmfulness Score (HS) under token limitation conditions while maintaining the benign performance.