Abstract:Virtual try-on and product personalization have become increasingly important in modern online shopping, highlighting the need for accurate body measurement estimation. Although previous research has advanced in estimating 3D body shapes from RGB images, the task is inherently ambiguous as the observed scale of human subjects in the images depends on two unknown factors: capture distance and body dimensions. This ambiguity is particularly pronounced in partial-view scenarios. To address this challenge, we propose a modular and simple height normalization solution. This solution relocates the subject skeleton to the desired position, thereby normalizing the scale and disentangling the relationship between the two variables. Our experimental results demonstrate that integrating this technique into state-of-the-art human mesh reconstruction models significantly enhances partial body measurement estimation. Additionally, we illustrate the applicability of this approach to multi-view settings, showcasing its versatility.
Abstract:We systematically study some basic properties of the theory of pre-topological spaces, such as, pre-base, subspace, axioms of separation, connectedness, etc. Pre-topology is also known as knowledge space in the theory of knowledge structures. We discuss the language of axioms of separation of pre-topology in the theory of knowledge spaces, the relation of Alexandroff spaces and quasi ordinal spaces, and the applications of the density of pre-topological spaces in primary items for knowledge spaces. In particular, we give a characterization of a skill multimap such that the delineate knowledge structure is a knowledge space, which gives an answer to a problem in \cite{falmagne2011learning} or \cite{XGLJ} whenever each item with finitely many competencies; moreover, we give an algorithm to find the set of atom primary items for any finite knowledge spaces.