Abstract:Recently, the success of Text-to-Image (T2I) models has led to the rise of numerous third-party platforms, which claim to provide cheaper API services and more flexibility in model options. However, this also raises a new security concern: Are these third-party services truly offering the models they claim? To address this problem, we propose the first T2I model verification method named Text-to-Image Model Verification via Non-Transferable Adversarial Attacks (TVN). The non-transferability of adversarial examples means that these examples are only effective on a target model and ineffective on other models, thereby allowing for the verification of the target model. TVN utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize the cosine similarity of a prompt's text encoding, generating non-transferable adversarial prompts. By calculating the CLIP-text scores between the non-transferable adversarial prompts without perturbations and the images, we can verify if the model matches the claimed target model, based on a 3-sigma threshold. The experiments showed that TVN performed well in both closed-set and open-set scenarios, achieving a verification accuracy of over 90\%. Moreover, the adversarial prompts generated by TVN significantly reduced the CLIP-text scores of the target model, while having little effect on other models.
Abstract:Vision Transformers (ViTs) have outperformed traditional Convolutional Neural Networks (CNN) across various computer vision tasks. However, akin to CNN, ViTs are vulnerable to backdoor attacks, where the adversary embeds the backdoor into the victim model, causing it to make wrong predictions about testing samples containing a specific trigger. Existing backdoor attacks against ViTs have the limitation of failing to strike an optimal balance between attack stealthiness and attack effectiveness. In this work, we propose an Attention Gradient-based Erosion Backdoor (AGEB) targeted at ViTs. Considering the attention mechanism of ViTs, AGEB selectively erodes pixels in areas of maximal attention gradient, embedding a covert backdoor trigger. Unlike previous backdoor attacks against ViTs, AGEB achieves an optimal balance between attack stealthiness and attack effectiveness, ensuring the trigger remains invisible to human detection while preserving the model's accuracy on clean samples. Extensive experimental evaluations across various ViT architectures and datasets confirm the effectiveness of AGEB, achieving a remarkable Attack Success Rate (ASR) without diminishing Clean Data Accuracy (CDA). Furthermore, the stealthiness of AGEB is rigorously validated, demonstrating minimal visual discrepancies between the clean and the triggered images.