Abstract:Since the introduction of Generative Adversarial Networks (GANs) in speech synthesis, remarkable achievements have been attained. In a thorough exploration of vocoders, it has been discovered that audio waveforms can be generated at speeds exceeding real-time while maintaining high fidelity, achieved through the utilization of GAN-based models. Typically, the inputs to the vocoder consist of band-limited spectral information, which inevitably sacrifices high-frequency details. To address this, we adopt the full-band Mel spectrogram information as input, aiming to provide the vocoder with the most comprehensive information possible. However, previous studies have revealed that the use of full-band spectral information as input can result in the issue of over-smoothing, compromising the naturalness of the synthesized speech. To tackle this challenge, we propose VNet, a GAN-based neural vocoder network that incorporates full-band spectral information and introduces a Multi-Tier Discriminator (MTD) comprising multiple sub-discriminators to generate high-resolution signals. Additionally, we introduce an asymptotically constrained method that modifies the adversarial loss of the generator and discriminator, enhancing the stability of the training process. Through rigorous experiments, we demonstrate that the VNet model is capable of generating high-fidelity speech and significantly improving the performance of the vocoder.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:This empirical study serves as a primer for interested service providers to determine if and how Large Language Models (LLMs) technology will be integrated for their practitioners and the broader community. We investigate the mutual learning journey of non-AI experts and AI through CoAGent, a service co-creation tool with LLM-based agents. Engaging in a three-stage participatory design processes, we work with with 23 domain experts from public libraries across the U.S., uncovering their fundamental challenges of integrating AI into human workflows. Our findings provide 23 actionable "heuristics for service co-creation with AI", highlighting the nuanced shared responsibilities between humans and AI. We further exemplar 9 foundational agency aspects for AI, emphasizing essentials like ownership, fair treatment, and freedom of expression. Our innovative approach enriches the participatory design model by incorporating AI as crucial stakeholders and utilizing AI-AI interaction to identify blind spots. Collectively, these insights pave the way for synergistic and ethical human-AI co-creation in service contexts, preparing for workforce ecosystems where AI coexists.
Abstract:The health monitoring of chronic diseases is very important for people with movement disorders because of their limited mobility and long duration of chronic diseases. Machine learning-based processing of data collected from the human with movement disorders using wearable sensors is an effective method currently available for health monitoring. However, wearable sensor systems are difficult to obtain high-quality and large amounts of data, which cannot meet the requirement for diagnostic accuracy. Moreover, existing machine learning methods do not handle this problem well. Feature learning is key to machine learning. To solve this problem, a health monitoring of movement disorder subject based on diamond stacked sparse autoencoder ensemble model (DsaeEM) is proposed in this paper. This algorithm has two major components. First, feature expansion is designed using feature-embedded stacked sparse autoencoder (FSSAE). Second, a feature reduction mechanism is designed to remove the redundancy among the expanded features. This mechanism includes L1 regularized feature-reduction algorithm and the improved manifold dimensionality reduction algorithm. This paper refers to the combined feature expansion and feature reduction mechanism as the diamond-like feature learning mechanism. The method is experimentally verified with several state of art algorithms and on two datasets. The results show that the proposed algorithm has higher accuracy apparently. In conclusion, this study developed an effective and feasible feature-learning algorithm for the recognition of chronic diseases.
Abstract:The challenge of imbalanced learning lies not only in class imbalance problem, but also in the class overlapping problem which is complex. However, most of the existing algorithms mainly focus on the former. The limitation prevents the existing methods from breaking through. To address this limitation, this paper proposes an ensemble learning algorithm based on dual clustering and stage-wise hybrid sampling (DCSHS). The DCSHS has three parts. Firstly, we design a projection clustering combination framework (PCC) guided by Davies-Bouldin clustering effectiveness index (DBI), which is used to obtain high-quality clusters and combine them to obtain a set of cross-complete subsets (CCS) with balanced class and low overlapping. Secondly, according to the characteristics of subset classes, a stage-wise hybrid sampling algorithm is designed to realize the de-overlapping and balancing of subsets. Finally, a projective clustering transfer mapping mechanism (CTM) is constructed for all processed subsets by means of transfer learning, thereby reducing class overlapping and explore structure information of samples. The major advantage of our algorithm is that it can exploit the intersectionality of the CCS to realize the soft elimination of overlapping majority samples, and learn as much information of overlapping samples as possible, thereby enhancing the class overlapping while class balancing. In the experimental section, more than 30 public datasets and over ten representative algorithms are chosen for verification. The experimental results show that the DCSHS is significantly best in terms of various evaluation criteria.
Abstract:Stack autoencoder (SAE), as a representative deep network, has unique and excellent performance in feature learning, and has received extensive attention from researchers. However, existing deep SAEs focus on original samples without considering the hierarchical structural information between samples. To address this limitation, this paper proposes a new SAE model-neighbouring envelope embedded stack autoencoder ensemble (NE_ESAE). Firstly, the neighbouring sample envelope learning mechanism (NSELM) is proposed for preprocessing of input of SAE. NSELM constructs sample pairs by combining neighbouring samples. Besides, the NSELM constructs a multilayer sample spaces by multilayer iterative mean clustering, which considers the similar samples and generates layers of envelope samples with hierarchical structural information. Second, an embedded stack autoencoder (ESAE) is proposed and trained in each layer of sample space to consider the original samples during training and in the network structure, thereby better finding the relationship between original feature samples and deep feature samples. Third, feature reduction and base classifiers are conducted on the layers of envelope samples respectively, and output classification results of every layer of samples. Finally, the classification results of the layers of envelope sample space are fused through the ensemble mechanism. In the experimental section, the proposed algorithm is validated with over ten representative public datasets. The results show that our method significantly has better performance than existing traditional feature learning methods and the representative deep autoencoders.
Abstract:The class imbalance problem is important and challenging. Ensemble approaches are widely used to tackle this problem because of their effectiveness. However, existing ensemble methods are always applied into original samples, while not considering the structure information among original samples. The limitation will prevent the imbalanced learning from being better. Besides, research shows that the structure information among samples includes local and global structure information. Based on the analysis above, an imbalanced ensemble algorithm with the deep sample pre-envelope network (DSEN) and local-global structure consistency mechanism (LGSCM) is proposed here to solve the problem.This algorithm can guarantee high-quality deep envelope samples for considering the local manifold and global structures information, which is helpful for imbalance learning. First, the deep sample envelope pre-network (DSEN) is designed to mine structure information among samples.Then, the local manifold structure metric (LMSM) and global structure distribution metric (GSDM) are designed to construct LGSCM to enhance distribution consistency of interlayer samples. Next, the DSEN and LGSCM are put together to form the final deep sample envelope network (DSEN-LG). After that, base classifiers are applied on the layers of deep samples respectively.Finally, the predictive results from base classifiers are fused through bagging ensemble learning mechanism. To demonstrate the effectiveness of the proposed method, forty-four public datasets and more than ten representative relevant algorithms are chosen for verification. The experimental results show that the algorithm is significantly better than other imbalanced ensemble algorithms.
Abstract:Parkinson disease (PD)'s speech recognition is an effective way for its diagnosis, which has become a hot and difficult research area in recent years. As we know, there are large corpuses (segments) within one subject. However, too large segments will increase the complexity of the classification model. Besides, the clinicians interested in finding diagnostic speech markers that reflect the pathology of the whole subject. Since the optimal relevant features of each speech sample segment are different, it is difficult to find the uniform diagnostic speech markers. Therefore, it is necessary to reconstruct the existing large segments within one subject into few segments even one segment within one subject, which can facilitate the extraction of relevant speech features to characterize diagnostic markers for the whole subject. To address this problem, an enveloped deep speech sample learning algorithm for Parkinson's subjects based on multilayer fuzzy c-mean (MlFCM) clustering and interlayer consistency preservation is proposed in this paper. The algorithm can be used to achieve intra-subject sample reconstruction for Parkinson's disease (PD) to obtain a small number of high-quality prototype sample segments. At the end of the paper, several representative PD speech datasets are selected and compared with the state-of-the-art related methods, respectively. The experimental results show that the proposed algorithm is effective signifcantly.
Abstract:Imbalanced learning is important and challenging since the problem of the classification of imbalanced datasets is prevalent in machine learning and data mining fields. Sampling approaches are proposed to address this issue, and cluster-based oversampling methods have shown great potential as they aim to simultaneously tackle between-class and within-class imbalance issues. However, all existing clustering methods are based on a one-time approach. Due to the lack of a priori knowledge, improper setting of the number of clusters often exists, which leads to poor clustering performance. Besides, the existing methods are likely to generate noisy instances. To solve these problems, this paper proposes a deep instance envelope network-based imbalanced learning algorithm with the multilayer fuzzy c-means (MlFCM) and a minimum interlayer discrepancy mechanism based on the maximum mean discrepancy (MIDMD). This algorithm can guarantee high quality balanced instances using a deep instance envelope network in the absence of prior knowledge. In the experimental section, thirty-three popular public datasets are used for verification, and over ten representative algorithms are used for comparison. The experimental results show that the proposed approach significantly outperforms other popular methods.
Abstract:The risk of Parkinson's disease (PD) is extremely serious, and PD speech recognition is an effective method of diagnosis nowadays. However, due to the influence of the disease stage, corpus, and other factors on data collection, the ability of every samples within one subject to reflect the status of PD vary. No samples are useless totally, and not samples are 100% perfect. This characteristic means that it is not suitable just to remove some samples or keep some samples. It is necessary to consider the sample transformation for obtaining high quality new samples. Unfortunately, existing PD speech recognition methods focus mainly on feature learning and classifier design rather than sample learning, and few methods consider the sample transformation. To solve the problem above, a PD speech sample transformation algorithm based on multitype reconstruction operators is proposed in this paper. The algorithm is divided into four major steps. Three types of reconstruction operators are designed in the algorithm: types A, B and C. Concerning the type A operator, the original dataset is directly reconstructed by designing a linear transformation to obtain the first dataset. The type B operator is designed for clustering and linear transformation of the dataset to obtain the second new dataset. The third operator, namely, the type C operator, reconstructs the dataset by clustering and convolution to obtain the third dataset. Finally, the base classifier is trained based on the three new datasets, and then the classification results are fused by decision weighting. In the experimental section, two representative PD speech datasets are used for verification. The results show that the proposed algorithm is effective. Compared with other algorithms, the proposed algorithm achieves apparent improvements in terms of classification accuracy.