Abstract:Visual navigation is an essential skill for home-assistance robots, providing the object-searching ability to accomplish long-horizon daily tasks. Many recent approaches use Large Language Models (LLMs) for commonsense inference to improve exploration efficiency. However, the planning process of LLMs is limited within texts and it is difficult to represent the spatial occupancy and geometry layout only by texts. Both are important for making rational navigation decisions. In this work, we seek to unleash the spatial perception and planning ability of Vision-Language Models (VLMs), and explore whether the VLM, with only on-board camera captured RGB/RGB-D stream inputs, can efficiently finish the visual navigation tasks in a mapless manner. We achieve this by developing the imagination-powered navigation framework ImagineNav, which imagines the future observation images at valuable robot views and translates the complex navigation planning process into a rather simple best-view image selection problem for VLM. To generate appropriate candidate robot views for imagination, we introduce the Where2Imagine module, which is distilled to align with human navigation habits. Finally, to reach the VLM preferred views, an off-the-shelf point-goal navigation policy is utilized. Empirical experiments on the challenging open-vocabulary object navigation benchmarks demonstrates the superiority of our proposed system.
Abstract:The health monitoring of chronic diseases is very important for people with movement disorders because of their limited mobility and long duration of chronic diseases. Machine learning-based processing of data collected from the human with movement disorders using wearable sensors is an effective method currently available for health monitoring. However, wearable sensor systems are difficult to obtain high-quality and large amounts of data, which cannot meet the requirement for diagnostic accuracy. Moreover, existing machine learning methods do not handle this problem well. Feature learning is key to machine learning. To solve this problem, a health monitoring of movement disorder subject based on diamond stacked sparse autoencoder ensemble model (DsaeEM) is proposed in this paper. This algorithm has two major components. First, feature expansion is designed using feature-embedded stacked sparse autoencoder (FSSAE). Second, a feature reduction mechanism is designed to remove the redundancy among the expanded features. This mechanism includes L1 regularized feature-reduction algorithm and the improved manifold dimensionality reduction algorithm. This paper refers to the combined feature expansion and feature reduction mechanism as the diamond-like feature learning mechanism. The method is experimentally verified with several state of art algorithms and on two datasets. The results show that the proposed algorithm has higher accuracy apparently. In conclusion, this study developed an effective and feasible feature-learning algorithm for the recognition of chronic diseases.