Abstract:Despite the progress made in Mamba-based medical image segmentation models, current methods utilizing unidirectional or multi-directional feature scanning mechanisms fail to well model dependencies between neighboring positions in the image, hindering the effective modeling of local features. However, local features are crucial for medical image segmentation as they provide vital information about lesions and tissue structures. To address this limitation, we propose a simple yet effective method named SliceMamba, a locally sensitive pure Mamba medical image segmentation model. The proposed SliceMamba includes an efffcient Bidirectional Slice Scan module (BSS), which performs bidirectional feature segmentation while employing varied scanning mechanisms for distinct features. This ensures that spatially adjacent features maintain proximity in the scanning sequence, thereby enhancing segmentation performance. Extensive experiments on skin lesion and polyp segmentation datasets validate the effectiveness of our method.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:This paper introduces a novel benchmark as part of the AIS 2024 Real-Time Image Super-Resolution (RTSR) Challenge, which aims to upscale compressed images from 540p to 4K resolution (4x factor) in real-time on commercial GPUs. For this, we use a diverse test set containing a variety of 4K images ranging from digital art to gaming and photography. The images are compressed using the modern AVIF codec, instead of JPEG. All the proposed methods improve PSNR fidelity over Lanczos interpolation, and process images under 10ms. Out of the 160 participants, 25 teams submitted their code and models. The solutions present novel designs tailored for memory-efficiency and runtime on edge devices. This survey describes the best solutions for real-time SR of compressed high-resolution images.
Abstract:This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results. New methods for RAW Super-Resolution could be essential in modern Image Signal Processing (ISP) pipelines, however, this problem is not as explored as in the RGB domain. Th goal of this challenge is to upscale RAW Bayer images by 2x, considering unknown degradations such as noise and blur. In the challenge, a total of 230 participants registered, and 45 submitted results during thee challenge period. The performance of the top-5 submissions is reviewed and provided here as a gauge for the current state-of-the-art in RAW Image Super-Resolution.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:This paper reviews the NTIRE 2024 challenge on image super-resolution ($\times$4), highlighting the solutions proposed and the outcomes obtained. The challenge involves generating corresponding high-resolution (HR) images, magnified by a factor of four, from low-resolution (LR) inputs using prior information. The LR images originate from bicubic downsampling degradation. The aim of the challenge is to obtain designs/solutions with the most advanced SR performance, with no constraints on computational resources (e.g., model size and FLOPs) or training data. The track of this challenge assesses performance with the PSNR metric on the DIV2K testing dataset. The competition attracted 199 registrants, with 20 teams submitting valid entries. This collective endeavour not only pushes the boundaries of performance in single-image SR but also offers a comprehensive overview of current trends in this field.
Abstract:Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attentions due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require lots of trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently, by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features, but also finds the proper location for placing multi-head self-attention module. Our search algorithm is optimized towards multiple objective s (e.g., latency and mIoU) and capable of finding architectures on Pareto frontier with arbitrary number of branches in a single search. We further present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuse to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods on semantic segmentation task. Code and models are available at \url{https://github.com/MarvinYu1995/HyCTAS}.
Abstract:Single Image Super-Resolution (SISR) is a crucial task in low-level computer vision, aiming to reconstruct high-resolution images from low-resolution counterparts. Conventional attention mechanisms have significantly improved SISR performance but often result in complex network structures and large number of parameters, leading to slow inference speed and large model size. To address this issue, we propose the Swift Parameter-free Attention Network (SPAN), a highly efficient SISR model that balances parameter count, inference speed, and image quality. SPAN employs a novel parameter-free attention mechanism, which leverages symmetric activation functions and residual connections to enhance high-contribution information and suppress redundant information. Our theoretical analysis demonstrates the effectiveness of this design in achieving the attention mechanism's purpose. We evaluate SPAN on multiple benchmarks, showing that it outperforms existing efficient super-resolution models in terms of both image quality and inference speed, achieving a significant quality-speed trade-off. This makes SPAN highly suitable for real-world applications, particularly in resource-constrained scenarios. Notably, our model attains the best PSNR of 27.09 dB, and the test runtime of our team is reduced by 7.08ms in the NTIRE 2023 efficient super-resolution challenge. Our code and models are made publicly available at \url{https://github.com/hongyuanyu/SPAN}.
Abstract:Gait recognition aims to identify individuals by recognizing their walking patterns. However, an observation is made that most of the previous gait recognition methods degenerate significantly due to two memorization effects, namely appearance memorization and label noise memorization. To address the problem, for the first time noisy gait recognition is studied, and a cyclic noise-tolerant network (CNTN) is proposed with a cyclic training algorithm, which equips the two parallel networks with explicitly different abilities, namely one forgetting network and one memorizing network. The overall model will not memorize the pattern unless the two different networks both memorize it. Further, a more refined co-teaching constraint is imposed to help the model learn intrinsic patterns which are less influenced by memorization. Also, to address label noise memorization, an adaptive noise detection module is proposed to rule out the samples with high possibility to be noisy from updating the model. Experiments are conducted on the three most popular benchmarks and CNTN achieves state-of-the-art performances. We also reconstruct two noisy gait recognition datasets, and CNTN gains significant improvements (especially 6% improvements on CL setting). CNTN is also compatible with any off-the-shelf backbones and improves them consistently.
Abstract:Gait recognition is a unique biometric technique that can be performed at a long distance non-cooperatively and has broad applications in public safety and intelligent traffic systems. Previous gait works focus more on minimizing the intra-class variance while ignoring the significance in constraining inter-class variance. To this end, we propose a generalized inter-class loss which resolves the inter-class variance from both sample-level feature distribution and class-level feature distribution. Instead of equal penalty strength on pair scores, the proposed loss optimizes sample-level inter-class feature distribution by dynamically adjusting the pairwise weight. Further, in class-level distribution, generalized inter-class loss adds a constraint on the uniformity of inter-class feature distribution, which forces the feature representations to approximate a hypersphere and keep maximal inter-class variance. In addition, the proposed method automatically adjusts the margin between classes which enables the inter-class feature distribution to be more flexible. The proposed method can be generalized to different gait recognition networks and achieves significant improvements. We conduct a series of experiments on CASIA-B and OUMVLP, and the experimental results show that the proposed loss can significantly improve the performance and achieves the state-of-the-art performances.