Abstract:Recent advancements in 3D Gaussian Splatting (3D-GS) have demonstrated the potential of using 3D Gaussian primitives for high-speed, high-fidelity, and cost-efficient novel view synthesis from continuously calibrated input views. However, conventional methods require high-frame-rate dense and high-quality sharp images, which are time-consuming and inefficient to capture, especially in dynamic environments. Event cameras, with their high temporal resolution and ability to capture asynchronous brightness changes, offer a promising alternative for more reliable scene reconstruction without motion blur. In this paper, we propose SweepEvGS, a novel hardware-integrated method that leverages event cameras for robust and accurate novel view synthesis across various imaging settings from a single sweep. SweepEvGS utilizes the initial static frame with dense event streams captured during a single camera sweep to effectively reconstruct detailed scene views. We also introduce different real-world hardware imaging systems for real-world data collection and evaluation for future research. We validate the robustness and efficiency of SweepEvGS through experiments in three different imaging settings: synthetic objects, real-world macro-level, and real-world micro-level view synthesis. Our results demonstrate that SweepEvGS surpasses existing methods in visual rendering quality, rendering speed, and computational efficiency, highlighting its potential for dynamic practical applications.
Abstract:We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page:https://suimuc.github.io/suimu.github.io/projects/VIRES/
Abstract:Camera-based tactile sensors can provide high-density surface geometry and force information for robots in the interaction process with the target. However, most existing methods cannot achieve accurate reconstruction with high efficiency, impeding the applications in robots. To address these problems, we propose an efficient two-shot photometric stereo method based on symmetric color LED distribution. Specifically, based on the sensing response curve of CMOS channels, we design orthogonal red and blue LEDs as illumination to acquire four observation maps using channel-splitting in a two-shot manner. Subsequently, we develop a two-shot photometric stereo theory, which can estimate accurate surface normal and greatly reduce the computing overhead in magnitude. Finally, leveraging the characteristics of the camera-based tactile sensor, we optimize the algorithm to be a highly efficient, pure addition operation. Simulation and real-world experiments demonstrate the advantages of our approach. Further details are available on: https://github.com/Tacxels/SymmeTac.
Abstract:We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
Abstract:Synthesizing realistic videos of talking faces under custom lighting conditions and viewing angles benefits various downstream applications like video conferencing. However, most existing relighting methods are either time-consuming or unable to adjust the viewpoints. In this paper, we present the first real-time 3D-aware method for relighting in-the-wild videos of talking faces based on Neural Radiance Fields (NeRF). Given an input portrait video, our method can synthesize talking faces under both novel views and novel lighting conditions with a photo-realistic and disentangled 3D representation. Specifically, we infer an albedo tri-plane, as well as a shading tri-plane based on a desired lighting condition for each video frame with fast dual-encoders. We also leverage a temporal consistency network to ensure smooth transitions and reduce flickering artifacts. Our method runs at 32.98 fps on consumer-level hardware and achieves state-of-the-art results in terms of reconstruction quality, lighting error, lighting instability, temporal consistency and inference speed. We demonstrate the effectiveness and interactivity of our method on various portrait videos with diverse lighting and viewing conditions.
Abstract:Automatic video colorization is inherently an ill-posed problem because each monochrome frame has multiple optional color candidates. Previous exemplar-based video colorization methods restrict the user's imagination due to the elaborate retrieval process. Alternatively, conditional image colorization methods combined with post-processing algorithms still struggle to maintain temporal consistency. To address these issues, we present Language-based video Colorization for Creative and Consistent Colors (L-C4) to guide the colorization process using user-provided language descriptions. Our model is built upon a pre-trained cross-modality generative model, leveraging its comprehensive language understanding and robust color representation abilities. We introduce the cross-modality pre-fusion module to generate instance-aware text embeddings, enabling the application of creative colors. Additionally, we propose temporally deformable attention to prevent flickering or color shifts, and cross-clip fusion to maintain long-term color consistency. Extensive experimental results demonstrate that L-C4 outperforms relevant methods, achieving semantically accurate colors, unrestricted creative correspondence, and temporally robust consistency.
Abstract:Electromagnetic Inverse Scattering Problems (EISP) have gained wide applications in computational imaging. By solving EISP, the internal relative permittivity of the scatterer can be non-invasively determined based on the scattered electromagnetic fields. Despite previous efforts to address EISP, achieving better solutions to this problem has remained elusive, due to the challenges posed by inversion and discretization. This paper tackles those challenges in EISP via an implicit approach. By representing the scatterer's relative permittivity as a continuous implicit representation, our method is able to address the low-resolution problems arising from discretization. Further, optimizing this implicit representation within a forward framework allows us to conveniently circumvent the challenges posed by inverse estimation. Our approach outperforms existing methods on standard benchmark datasets. Project page: https://luo-ziyuan.github.io/Imaging-Interiors
Abstract:Event cameras, mimicking the human retina, capture brightness changes with unparalleled temporal resolution and dynamic range. Integrating events into intensities poses a highly ill-posed challenge, marred by initial condition ambiguities. Traditional regression-based deep learning methods fall short in perceptual quality, offering deterministic and often unrealistic reconstructions. In this paper, we introduce diffusion models to events-to-video reconstruction, achieving colorful, realistic, and perceptually superior video generation from achromatic events. Powered by the image generation ability and knowledge of pretrained diffusion models, the proposed method can achieve a better trade-off between the perception and distortion of the reconstructed frame compared to previous solutions. Extensive experiments on benchmark datasets demonstrate that our approach can produce diverse, realistic frames with faithfulness to the given events.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:We present NeRSP, a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images. Reflective surface reconstruction is extremely challenging as specular reflections are view-dependent and thus violate the multiview consistency for multiview stereo. On the other hand, sparse image inputs, as a practical capture setting, commonly cause incomplete or distorted results due to the lack of correspondence matching. This paper jointly handles the challenges from sparse inputs and reflective surfaces by leveraging polarized images. We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency, which jointly optimize the surface geometry modeled via implicit neural representation. Based on the experiments on our synthetic and real datasets, we achieve the state-of-the-art surface reconstruction results with only 6 views as input.