Abstract:Automatic video colorization is inherently an ill-posed problem because each monochrome frame has multiple optional color candidates. Previous exemplar-based video colorization methods restrict the user's imagination due to the elaborate retrieval process. Alternatively, conditional image colorization methods combined with post-processing algorithms still struggle to maintain temporal consistency. To address these issues, we present Language-based video Colorization for Creative and Consistent Colors (L-C4) to guide the colorization process using user-provided language descriptions. Our model is built upon a pre-trained cross-modality generative model, leveraging its comprehensive language understanding and robust color representation abilities. We introduce the cross-modality pre-fusion module to generate instance-aware text embeddings, enabling the application of creative colors. Additionally, we propose temporally deformable attention to prevent flickering or color shifts, and cross-clip fusion to maintain long-term color consistency. Extensive experimental results demonstrate that L-C4 outperforms relevant methods, achieving semantically accurate colors, unrestricted creative correspondence, and temporally robust consistency.
Abstract:This paper studies the problem of language-guided reflection separation, which aims at addressing the ill-posed reflection separation problem by introducing language descriptions to provide layer content. We propose a unified framework to solve this problem, which leverages the cross-attention mechanism with contrastive learning strategies to construct the correspondence between language descriptions and image layers. A gated network design and a randomized training strategy are employed to tackle the recognizable layer ambiguity. The effectiveness of the proposed method is validated by the significant performance advantage over existing reflection separation methods on both quantitative and qualitative comparisons.
Abstract:Though Neural Radiance Fields (NeRF) can produce colorful 3D representations of the world by using a set of 2D images, such ability becomes non-existent when only monochromatic images are provided. Since color is necessary in representing the world, reproducing color from monochromatic radiance fields becomes crucial. To achieve this goal, instead of manipulating the monochromatic radiance fields directly, we consider it as a representation-prediction task in the Lab color space. By first constructing the luminance and density representation using monochromatic images, our prediction stage can recreate color representation on the basis of an image colorization module. We then reproduce a colorful implicit model through the representation of luminance, density, and color. Extensive experiments have been conducted to validate the effectiveness of our approaches. Our project page: https://liquidammonia.github.io/color-nerf.
Abstract:Language-based colorization produces plausible and visually pleasing colors under the guidance of user-friendly natural language descriptions. Previous methods implicitly assume that users provide comprehensive color descriptions for most of the objects in the image, which leads to suboptimal performance. In this paper, we propose a unified model to perform language-based colorization with any-level descriptions. We leverage the pretrained cross-modality generative model for its robust language understanding and rich color priors to handle the inherent ambiguity of any-level descriptions. We further design modules to align with input conditions to preserve local spatial structures and prevent the ghosting effect. With the proposed novel sampling strategy, our model achieves instance-aware colorization in diverse and complex scenarios. Extensive experimental results demonstrate our advantages of effectively handling any-level descriptions and outperforming both language-based and automatic colorization methods. The code and pretrained models are available at: https://github.com/changzheng123/L-CAD.
Abstract:The structured time series (STS) classification problem requires the modeling of interweaved spatiotemporal dependency. most previous STS classification methods model the spatial and temporal dependencies independently. Due to the complexity of the STS data, we argue that a desirable STS classification method should be a holistic framework that can be made as adaptive and flexible as possible. This motivates us to design a deep neural network with such merits. Inspired by the dual-stream hypothesis in neural science, we propose a novel dual-stream framework for modeling the interweaved spatiotemporal dependency, and develop a convolutional neural network within this framework that aims to achieve high adaptability and flexibility in STS configurations from various diagonals, i.e., sequential order, dependency range and features. The proposed architecture is highly modularized and scalable, making it easy to be adapted to specific tasks. The effectiveness of our model is demonstrated through experiments on synthetic data as well as benchmark datasets for skeleton based activity recognition.