Abstract:Meta-learning is a general approach to equip machine learning models with the ability to handle few-shot scenarios when dealing with many tasks. Most existing meta-learning methods work based on the assumption that all tasks are of equal importance. However, real-world applications often present heterogeneous tasks characterized by varying difficulty levels, noise in training samples, or being distinctively different from most other tasks. In this paper, we introduce a novel meta-learning method designed to effectively manage such heterogeneous tasks by employing rank-based task-level learning objectives, Heterogeneous Tasks Robust Meta-learning (HeTRoM). HeTRoM is proficient in handling heterogeneous tasks, and it prevents easy tasks from overwhelming the meta-learner. The approach allows for an efficient iterative optimization algorithm based on bi-level optimization, which is then improved by integrating statistical guidance. Our experimental results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings and enhancing the meta-learner's overall performance.
Abstract:Detecting deepfakes has become an important task. Most existing detection methods provide only real/fake predictions without offering human-comprehensible explanations. Recent studies leveraging MLLMs for deepfake detection have shown improvements in explainability. However, the performance of pre-trained MLLMs (e.g., LLaVA) remains limited due to a lack of understanding of their capabilities for this task and strategies to enhance them. In this work, we empirically assess the strengths and weaknesses of MLLMs specifically in deepfake detection via forgery features analysis. Building on these assessments, we propose a novel framework called ${X}^2$-DFD, consisting of three core modules. The first module, Model Feature Assessment (MFA), measures the detection capabilities of forgery features intrinsic to MLLMs, and gives a descending ranking of these features. The second module, Strong Feature Strengthening (SFS), enhances the detection and explanation capabilities by fine-tuning the MLLM on a dataset constructed based on the top-ranked features. The third module, Weak Feature Supplementing (WFS), improves the fine-tuned MLLM's capabilities on lower-ranked features by integrating external dedicated deepfake detectors. To verify the effectiveness of this framework, we further present a practical implementation, where an automated forgery features generation, evaluation, and ranking procedure is designed for MFA module; an automated generation procedure of the fine-tuning dataset containing real and fake images with explanations based on top-ranked features is developed for SFS model; an external conventional deepfake detector focusing on blending artifact, which corresponds to a low detection capability in the pre-trained MLLM, is integrated for WFS module. Experiments show that our approach enhances both detection and explanation performance.
Abstract:Diffusion-based generative models have demonstrated their powerful performance across various tasks, but this comes at a cost of the slow sampling speed. To achieve both efficient and high-quality synthesis, various distillation-based accelerated sampling methods have been developed recently. However, they generally require time-consuming fine tuning with elaborate designs to achieve satisfactory performance in a specific number of function evaluation (NFE), making them difficult to employ in practice. To address this issue, we propose Simple and Fast Distillation (SFD) of diffusion models, which simplifies the paradigm used in existing methods and largely shortens their fine-tuning time up to 1000$\times$. We begin with a vanilla distillation-based sampling method and boost its performance to state of the art by identifying and addressing several small yet vital factors affecting the synthesis efficiency and quality. Our method can also achieve sampling with variable NFEs using a single distilled model. Extensive experiments demonstrate that SFD strikes a good balance between the sample quality and fine-tuning costs in few-step image generation task. For example, SFD achieves 4.53 FID (NFE=2) on CIFAR-10 with only 0.64 hours of fine-tuning on a single NVIDIA A100 GPU. Our code is available at https://github.com/zju-pi/diff-sampler.
Abstract:Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, i.e., the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches in the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the essential sampling process. All discussions are centered around popular applications. Finally, we pinpoint some critical yet still open problems to be solved in the future and suggest some possible solutions. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
Abstract:In recent years, the multimedia forensics and security community has seen remarkable progress in multitask learning for DeepFake (i.e., face forgery) detection. The prevailing strategy has been to frame DeepFake detection as a binary classification problem augmented by manipulation-oriented auxiliary tasks. This strategy focuses on learning features specific to face manipulations, which exhibit limited generalizability. In this paper, we delve deeper into semantics-oriented multitask learning for DeepFake detection, leveraging the relationships among face semantics via joint embedding. We first propose an automatic dataset expansion technique that broadens current face forgery datasets to support semantics-oriented DeepFake detection tasks at both the global face attribute and local face region levels. Furthermore, we resort to joint embedding of face images and their corresponding labels (depicted by textual descriptions) for prediction. This approach eliminates the need for manually setting task-agnostic and task-specific parameters typically required when predicting labels directly from images. In addition, we employ a bi-level optimization strategy to dynamically balance the fidelity loss weightings of various tasks, making the training process fully automated. Extensive experiments on six DeepFake datasets show that our method improves the generalizability of DeepFake detection and, meanwhile, renders some degree of model interpretation by providing human-understandable explanations.
Abstract:Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.
Abstract:The CNN has achieved excellent results in the automatic classification of medical images. In this study, we propose a novel deep residual 3D attention non-local network (NL-RAN) to classify CT images included COVID-19, common pneumonia, and normal to perform rapid and explainable COVID-19 diagnosis. We built a deep residual 3D attention non-local network that could achieve end-to-end training. The network is embedded with a nonlocal module to capture global information, while a 3D attention module is embedded to focus on the details of the lesion so that it can directly analyze the 3D lung CT and output the classification results. The output of the attention module can be used as a heat map to increase the interpretability of the model. 4079 3D CT scans were included in this study. Each scan had a unique label (novel coronavirus pneumonia, common pneumonia, and normal). The CT scans cohort was randomly split into a training set of 3263 scans, a validation set of 408 scans, and a testing set of 408 scans. And compare with existing mainstream classification methods, such as CovNet, CBAM, ResNet, etc. Simultaneously compare the visualization results with visualization methods such as CAM. Model performance was evaluated using the Area Under the ROC Curve(AUC), precision, and F1-score. The NL-RAN achieved the AUC of 0.9903, the precision of 0.9473, and the F1-score of 0.9462, surpass all the classification methods compared. The heat map output by the attention module is also clearer than the heat map output by CAM. Our experimental results indicate that our proposed method performs significantly better than existing methods. In addition, the first attention module outputs a heat map containing detailed outline information to increase the interpretability of the model. Our experiments indicate that the inference of our model is fast. It can provide real-time assistance with diagnosis.
Abstract:Image inpainting, which is the task of filling in missing areas in an image, is a common image editing technique. Inpainting can be used to conceal or alter image contents in malicious manipulation of images, driving the need for research in image inpainting detection. Existing methods mostly rely on a basic encoder-decoder structure, which often results in a high number of false positives or misses the inpainted regions, especially when dealing with targets of varying semantics and scales. Additionally, the absence of an effective approach to capture boundary artifacts leads to less accurate edge localization. In this paper, we describe a new method for inpainting detection based on a Dense Feature Interaction Network (DeFI-Net). DeFI-Net uses a novel feature pyramid architecture to capture and amplify multi-scale representations across various stages, thereby improving the detection of image inpainting by better revealing feature-level interactions. Additionally, the network can adaptively direct the lower-level features, which carry edge and shape information, to refine the localization of manipulated regions while integrating the higher-level semantic features. Using DeFI-Net, we develop a method combining complementary representations to accurately identify inpainted areas. Evaluation on five image inpainting datasets demonstrate the effectiveness of our approach, which achieves state-of-the-art performance in detecting inpainting across diverse models.
Abstract:Handwriting Verification is a critical in document forensics. Deep learning based approaches often face skepticism from forensic document examiners due to their lack of explainability and reliance on extensive training data and handcrafted features. This paper explores using Vision Language Models (VLMs), such as OpenAI's GPT-4o and Google's PaliGemma, to address these challenges. By leveraging their Visual Question Answering capabilities and 0-shot Chain-of-Thought (CoT) reasoning, our goal is to provide clear, human-understandable explanations for model decisions. Our experiments on the CEDAR handwriting dataset demonstrate that VLMs offer enhanced interpretability, reduce the need for large training datasets, and adapt better to diverse handwriting styles. However, results show that the CNN-based ResNet-18 architecture outperforms the 0-shot CoT prompt engineering approach with GPT-4o (Accuracy: 70%) and supervised fine-tuned PaliGemma (Accuracy: 71%), achieving an accuracy of 84% on the CEDAR AND dataset. These findings highlight the potential of VLMs in generating human-interpretable decisions while underscoring the need for further advancements to match the performance of specialized deep learning models.
Abstract:Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-aspect edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of MultiEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, MultiEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through an innovative attention distribution mechanism and a multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios. Dataset and code are available at https://mingzhenhuang.com/projects/MultiEdits.html.