Abstract:Text-to-speech (TTS) systems are traditionally trained using modest databases of studio-quality, prompted or read speech collected in benign acoustic environments such as anechoic rooms. The recent literature nonetheless shows efforts to train TTS systems using data collected in the wild. While this approach allows for the use of massive quantities of natural speech, until now, there are no common datasets. We introduce the TTS In the Wild (TITW) dataset, the result of a fully automated pipeline, in this case, applied to the VoxCeleb1 dataset commonly used for speaker recognition. We further propose two training sets. TITW-Hard is derived from the transcription, segmentation, and selection of VoxCeleb1 source data. TITW-Easy is derived from the additional application of enhancement and additional data selection based on DNSMOS. We show that a number of recent TTS models can be trained successfully using TITW-Easy, but that it remains extremely challenging to produce similar results using TITW-Hard. Both the dataset and protocols are publicly available and support the benchmarking of TTS systems trained using TITW data.
Abstract:ASVspoof 5 is the fifth edition in a series of challenges that promote the study of speech spoofing and deepfake attacks, and the design of detection solutions. Compared to previous challenges, the ASVspoof 5 database is built from crowdsourced data collected from a vastly greater number of speakers in diverse acoustic conditions. Attacks, also crowdsourced, are generated and tested using surrogate detection models, while adversarial attacks are incorporated for the first time. New metrics support the evaluation of spoofing-robust automatic speaker verification (SASV) as well as stand-alone detection solutions, i.e., countermeasures without ASV. We describe the two challenge tracks, the new database, the evaluation metrics, baselines, and the evaluation platform, and present a summary of the results. Attacks significantly compromise the baseline systems, while submissions bring substantial improvements.
Abstract:Current trends in audio anti-spoofing detection research strive to improve models' ability to generalize across unseen attacks by learning to identify a variety of spoofing artifacts. This emphasis has primarily focused on the spoof class. Recently, several studies have noted that the distribution of silence differs between the two classes, which can serve as a shortcut. In this paper, we extend class-wise interpretations beyond silence. We employ loss analysis and asymmetric methodologies to move away from traditional attack-focused and result-oriented evaluations towards a deeper examination of model behaviors. Our investigations highlight the significant differences in training dynamics between the two classes, emphasizing the need for future research to focus on robust modeling of the bonafide class.
Abstract:The current automatic speaker verification (ASV) task involves making binary decisions on two types of trials: target and non-target. However, emerging advancements in speech generation technology pose significant threats to the reliability of ASV systems. This study investigates whether ASV effortlessly acquires robustness against spoofing attacks (i.e., zero-shot capability) by systematically exploring diverse ASV systems and spoofing attacks, ranging from traditional to cutting-edge techniques. Through extensive analyses conducted on eight distinct ASV systems and 29 spoofing attack systems, we demonstrate that the evolution of ASV inherently incorporates defense mechanisms against spoofing attacks. Nevertheless, our findings also underscore that the advancement of spoofing attacks far outpaces that of ASV systems, hence necessitating further research on spoofing-robust ASV methodologies.
Abstract:Spoofing detection is today a mainstream research topic. Standard metrics can be applied to evaluate the performance of isolated spoofing detection solutions and others have been proposed to support their evaluation when they are combined with speaker detection. These either have well-known deficiencies or restrict the architectural approach to combine speaker and spoof detectors. In this paper, we propose an architecture-agnostic detection cost function (a-DCF). A generalisation of the original DCF used widely for the assessment of automatic speaker verification (ASV), the a-DCF is designed for the evaluation of spoofing-robust ASV. Like the DCF, the a-DCF reflects the cost of decisions in a Bayes risk sense, with explicitly defined class priors and detection cost model. We demonstrate the merit of the a-DCF through the benchmarking evaluation of architecturally-heterogeneous spoofing-robust ASV solutions.
Abstract:This study aims to develop a single integrated spoofing-aware speaker verification (SASV) embeddings that satisfy two aspects. First, rejecting non-target speakers' input as well as target speakers' spoofed inputs should be addressed. Second, competitive performance should be demonstrated compared to the fusion of automatic speaker verification (ASV) and countermeasure (CM) embeddings, which outperformed single embedding solutions by a large margin in the SASV2022 challenge. We analyze that the inferior performance of single SASV embeddings comes from insufficient amount of training data and distinct nature of ASV and CM tasks. To this end, we propose a novel framework that includes multi-stage training and a combination of loss functions. Copy synthesis, combined with several vocoders, is also exploited to address the lack of spoofed data. Experimental results show dramatic improvements, achieving a SASV-EER of 1.06% on the evaluation protocol of the SASV2022 challenge.
Abstract:Audio anti-spoofing for automatic speaker verification aims to safeguard users' identities from spoofing attacks. Although state-of-the-art spoofing countermeasure(CM) models perform well on specific datasets, they lack generalization when evaluated with different datasets. To address this limitation, previous studies have explored large pre-trained models, which require significant resources and time. We aim to develop a compact but well-generalizing CM model that can compete with large pre-trained models. Our approach involves multi-dataset co-training and sharpness-aware minimization, which has not been investigated in this domain. Extensive experiments reveal that proposed method yield competitive results across various datasets while utilizing 4,000 times less parameters than the large pre-trained models.
Abstract:Shortcut learning, or `Clever Hans effect` refers to situations where a learning agent (e.g., deep neural networks) learns spurious correlations present in data, resulting in biased models. We focus on finding shortcuts in deep learning based spoofing countermeasures (CMs) that predict whether a given utterance is spoofed or not. While prior work has addressed specific data artifacts, such as silence, no general normative framework has been explored for analyzing shortcut learning in CMs. In this study, we propose a generic approach to identifying shortcuts by introducing systematic interventions on the training and test sides, including the boundary cases of `near-perfect` and `worse than coin flip` (label flip). By using three different models, ranging from classic to state-of-the-art, we demonstrate the presence of shortcut learning in five simulated conditions. We analyze the results using a regression model to understand how biases affect the class-conditional score statistics.
Abstract:Background noise is a well-known factor that deteriorates the accuracy and reliability of speaker verification (SV) systems by blurring speech intelligibility. Various studies have used separate pretrained enhancement models as the front-end module of the SV system in noisy environments, and these methods effectively remove noises. However, the denoising process of independent enhancement models not tailored to the SV task can also distort the speaker information included in utterances. We argue that the enhancement network and speaker embedding extractor should be fully jointly trained for SV tasks under noisy conditions to alleviate this issue. Therefore, we proposed a U-Net-based integrated framework that simultaneously optimizes speaker identification and feature enhancement losses. Moreover, we analyzed the structural limitations of using U-Net directly for noise SV tasks and further proposed Extended U-Net to reduce these drawbacks. We evaluated the models on the noise-synthesized VoxCeleb1 test set and VOiCES development set recorded in various noisy scenarios. The experimental results demonstrate that the U-Net-based fully joint training framework is more effective than the baseline, and the extended U-Net exhibited state-of-the-art performance versus the recently proposed compensation systems.
Abstract:Deep learning has brought impressive progress in the study of both automatic speaker verification (ASV) and spoofing countermeasures (CM). Although solutions are mutually dependent, they have typically evolved as standalone sub-systems whereby CM solutions are usually designed for a fixed ASV system. The work reported in this paper aims to gauge the improvements in reliability that can be gained from their closer integration. Results derived using the popular ASVspoof2019 dataset indicate that the equal error rate (EER) of a state-of-the-art ASV system degrades from 1.63% to 23.83% when the evaluation protocol is extended with spoofed trials.%subjected to spoofing attacks. However, even the straightforward integration of ASV and CM systems in the form of score-sum and deep neural network-based fusion strategies reduce the EER to 1.71% and 6.37%, respectively. The new Spoofing-Aware Speaker Verification (SASV) challenge has been formed to encourage greater attention to the integration of ASV and CM systems as well as to provide a means to benchmark different solutions.