Abstract:We introduce UNMIXX, a novel framework for multiple singing voices separation (MSVS). While related to speech separation, MSVS faces unique challenges: data scarcity and the highly correlated nature of singing voices mixture. To address these issues, we propose UNMIXX with three key components: (1) musically informed mixing strategy to construct highly correlated, music-like mixtures, (2) cross-source attention that drives representations of two singers apart via reverse attention, and (3) magnitude penalty loss penalizing erroneously assigned interfering energy. UNMIXX not only addresses data scarcity by simulating realistic training data, but also excels at separating highly correlated mixtures through cross-source interactions at both the architectural and loss levels. Our extensive experiments demonstrate that UNMIXX greatly enhances performance, with SDRi gains exceeding 2.2 dB over prior work.
Abstract:In this work, we present FastAV, the first token pruning framework tailored for audio-visual large language models (AV-LLMs). While token pruning has been actively explored in standard large language models (LLMs) and vision-language models (LVLMs), its application to AV-LLMs has received little attention, even though multimodal integration substantially increases their token demands. To address this gap, we introduce a pruning strategy that utilizes attention weights to identify tokens emphasized at different stages and estimates their importance. Building on this analysis, FastAV applies a two-stage pruning strategy: (1) global pruning in intermediate layers to remove broadly less influential tokens, and (2) fine pruning in later layers considering the impact on next token generation. Notably, our method does not rely on full attention maps, which makes it fully compatible with efficient attention mechanisms such as FlashAttention. Extensive experiments demonstrate that FastAV reduces FLOPs by more than 40% on two representative AV-LLMs, while preserving or even improving model performance.
Abstract:Automated Audio Captioning aims to describe the semantic content of input audio. Recent works have employed large language models (LLMs) as a text decoder to leverage their reasoning capabilities. However, prior approaches that project audio features into the LLM embedding space without considering cross-modal alignment fail to fully utilize these capabilities. To address this, we propose LAMB, an LLM-based audio captioning framework that bridges the modality gap between audio embeddings and the LLM text embedding space. LAMB incorporates a Cross-Modal Aligner that minimizes Cauchy-Schwarz divergence while maximizing mutual information, yielding tighter alignment between audio and text at both global and token levels. We further design a Two-Stream Adapter that extracts semantically enriched audio embeddings, thereby delivering richer information to the Cross-Modal Aligner. Finally, leveraging the aligned audio embeddings, a proposed Token Guide directly computes scores within the LLM text embedding space to steer the output logits of generated captions. Experimental results confirm that our framework strengthens the reasoning capabilities of the LLM decoder, achieving state-of-the-art performance on AudioCaps.
Abstract:The objective of this paper is to jointly synthesize interactive videos and conversational speech from text and reference images. With the ultimate goal of building human-like conversational systems, recent studies have explored talking or listening head generation as well as conversational speech generation. However, these works are typically studied in isolation, overlooking the multimodal nature of human conversation, which involves tightly coupled audio-visual interactions. In this paper, we introduce TAVID, a unified framework that generates both interactive faces and conversational speech in a synchronized manner. TAVID integrates face and speech generation pipelines through two cross-modal mappers (i.e., a motion mapper and a speaker mapper), which enable bidirectional exchange of complementary information between the audio and visual modalities. We evaluate our system across four dimensions: talking face realism, listening head responsiveness, dyadic interaction fluency, and speech quality. Extensive experiments demonstrate the effectiveness of our approach across all these aspects.




Abstract:The goal of this paper is to provide a new perspective on speech modeling by incorporating perceptual invariances such as amplitude scaling and temporal shifts. Conventional generative formulations often treat each dataset sample as a fixed representative of the target distribution. From a generative standpoint, however, such samples are only one among many perceptually equivalent variants within the true speech distribution. To address this, we propose Linear Projection Conditional Flow Matching (LP-CFM), which models targets as projection-aligned elongated Gaussians along perceptually equivalent variants. We further introduce Vector Calibrated Sampling (VCS) to keep the sampling process aligned with the line-projection path. In neural vocoding experiments across model sizes, data scales, and sampling steps, the proposed approach consistently improves over the conventional optimal transport CFM, with particularly strong gains in low-resource and few-step scenarios. These results highlight the potential of LP-CFM and VCS to provide more robust and perceptually grounded generative modeling of speech.




Abstract:Our aim is to develop a unified model for sign language understanding, that performs sign language translation (SLT) and sign-subtitle alignment (SSA). Together, these two tasks enable the conversion of continuous signing videos into spoken language text and also the temporal alignment of signing with subtitles -- both essential for practical communication, large-scale corpus construction, and educational applications. To achieve this, our approach is built upon three components: (i) a lightweight visual backbone that captures manual and non-manual cues from human keypoints and lip-region images while preserving signer privacy; (ii) a Sliding Perceiver mapping network that aggregates consecutive visual features into word-level embeddings to bridge the vision-text gap; and (iii) a multi-task scalable training strategy that jointly optimises SLT and SSA, reinforcing both linguistic and temporal alignment. To promote cross-linguistic generalisation, we pretrain our model on large-scale sign-text corpora covering British Sign Language (BSL) and American Sign Language (ASL) from the BOBSL and YouTube-SL-25 datasets. With this multilingual pretraining and strong model design, we achieve state-of-the-art results on the challenging BOBSL (BSL) dataset for both SLT and SSA. Our model also demonstrates robust zero-shot generalisation and finetuned SLT performance on How2Sign (ASL), highlighting the potential of scalable translation across different sign languages.




Abstract:This paper introduces a cross-lingual dubbing system that translates speech from one language to another while preserving key characteristics such as duration, speaker identity, and speaking speed. Despite the strong translation quality of existing speech translation approaches, they often overlook the transfer of speech patterns, leading to mismatches with source speech and limiting their suitability for dubbing applications. To address this, we propose a discrete diffusion-based speech-to-unit translation model with explicit duration control, enabling time-aligned translation. We then synthesize speech based on the predicted units and source identity with a conditional flow matching model. Additionally, we introduce a unit-based speed adaptation mechanism that guides the translation model to produce speech at a rate consistent with the source, without relying on any text. Extensive experiments demonstrate that our framework generates natural and fluent translations that align with the original speech's duration and speaking pace, while achieving competitive translation performance.
Abstract:Hallucination remains a major challenge in multimodal large language models (MLLMs). To address this, various contrastive decoding (CD) methods have been proposed that contrasts original logits with hallucinated logits generated from perturbed inputs. While CD has shown promise in vision-language models (VLMs), it is not well-suited for AV-LLMs, where hallucinations often emerge from both unimodal and cross-modal combinations involving audio, video, and language. These intricate interactions call for a more adaptive and modality-aware decoding strategy. In this paper, we propose Audio-Visual Contrastive Decoding (AVCD)-a novel, training-free decoding framework designed to model trimodal interactions and suppress modality-induced hallucinations in AV-LLMs. Unlike previous CD methods in VLMs that corrupt a fixed modality, AVCD leverages attention distributions to dynamically identify less dominant modalities and applies attentive masking to generate perturbed output logits. To support CD in a trimodal setting, we also reformulate the original CD framework to jointly handle audio, visual, and textual inputs. Finally, to improve efficiency, we introduce entropy-guided adaptive decoding, which selectively skips unnecessary decoding steps based on the model's confidence in its predictions. Extensive experiments demonstrate that AVCD consistently outperforms existing decoding methods. Especially, on the AVHBench dataset, it improves accuracy by 6% for VideoLLaMA2 and 11% for video-SALMONN, demonstrating strong robustness and generalizability.
Abstract:The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.
Abstract:The goal of this paper is to optimize the training process of diffusion-based text-to-speech models. While recent studies have achieved remarkable advancements, their training demands substantial time and computational costs, largely due to the implicit guidance of diffusion models in learning complex intermediate representations. To address this, we propose A-DMA, an effective strategy for Accelerating training with Dual Modality Alignment. Our method introduces a novel alignment pipeline leveraging both text and speech modalities: text-guided alignment, which incorporates contextual representations, and speech-guided alignment, which refines semantic representations. By aligning hidden states with discriminative features, our training scheme reduces the reliance on diffusion models for learning complex representations. Extensive experiments demonstrate that A-DMA doubles the convergence speed while achieving superior performance over baselines. Code and demo samples are available at: https://github.com/ZhikangNiu/A-DMA