POSTECH
Abstract:LiDAR is a crucial sensor in autonomous driving, commonly used alongside cameras. By exploiting this camera-LiDAR setup and recent advances in image representation learning, prior studies have shown the promising potential of image-to-LiDAR distillation. These prior arts focus on the designs of their own losses to effectively distill the pre-trained 2D image representations into a 3D model. However, the other parts of the designs have been surprisingly unexplored. We find that fundamental design elements, e.g., the LiDAR coordinate system, quantization according to the existing input interface, and data utilization, are more critical than developing loss functions, which have been overlooked in prior works. In this work, we show that simple fixes to these designs notably outperform existing methods by 16% in 3D semantic segmentation on the nuScenes dataset and 13% in 3D object detection on the KITTI dataset in downstream task performance. We focus on overlooked design choices along the spatial and temporal axes. Spatially, prior work has used cylindrical coordinate and voxel sizes without considering their side effects yielded with a commonly deployed sparse convolution layer input interface, leading to spatial quantization errors in 3D models. Temporally, existing work has avoided cumbersome data curation by discarding unsynced data, limiting the use to only the small portion of data that is temporally synced across sensors. We analyze these effects and propose simple solutions for each overlooked aspect.
Abstract:We propose SoundBrush, a model that uses sound as a brush to edit and manipulate visual scenes. We extend the generative capabilities of the Latent Diffusion Model (LDM) to incorporate audio information for editing visual scenes. Inspired by existing image-editing works, we frame this task as a supervised learning problem and leverage various off-the-shelf models to construct a sound-paired visual scene dataset for training. This richly generated dataset enables SoundBrush to learn to map audio features into the textual space of the LDM, allowing for visual scene editing guided by diverse in-the-wild sound. Unlike existing methods, SoundBrush can accurately manipulate the overall scenery or even insert sounding objects to best match the audio inputs while preserving the original content. Furthermore, by integrating with novel view synthesis techniques, our framework can be extended to edit 3D scenes, facilitating sound-driven 3D scene manipulation. Demos are available at https://soundbrush.github.io/.
Abstract:How does audio describe the world around us? In this work, we propose a method for generating images of visual scenes from diverse in-the-wild sounds. This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals. We address this challenge by designing a model that aligns audio-visual modalities by enriching audio features with visual information and translating them into the visual latent space. These features are then fed into the pre-trained image generator to produce images. To enhance image quality, we use sound source localization to select audio-visual pairs with strong cross-modal correlations. Our method achieves substantially better results on the VEGAS and VGGSound datasets compared to previous work and demonstrates control over the generation process through simple manipulations to the input waveform or latent space. Furthermore, we analyze the geometric properties of the learned embedding space and demonstrate that our learning approach effectively aligns audio-visual signals for cross-modal generation. Based on this analysis, we show that our method is agnostic to specific design choices, showing its generalizability by integrating various model architectures and different types of audio-visual data.
Abstract:Human motion, inherently continuous and dynamic, presents significant challenges for generative models. Despite their dominance, discrete quantization methods, such as VQ-VAEs, suffer from inherent limitations, including restricted expressiveness and frame-wise noise artifacts. Continuous approaches, while producing smoother and more natural motions, often falter due to high-dimensional complexity and limited training data. To resolve this "discord" between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that decodes discrete motion tokens into continuous motion through rectified flow. By employing an iterative refinement process in the continuous space, DisCoRD captures fine-grained dynamics and ensures smoother and more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals. Extensive evaluations demonstrate that DisCoRD achieves state-of-the-art performance, with FID of 0.032 on HumanML3D and 0.169 on KIT-ML. These results solidify DisCoRD as a robust solution for bridging the divide between discrete efficiency and continuous realism. Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
Abstract:Following the success of Large Language Models (LLMs), expanding their boundaries to new modalities represents a significant paradigm shift in multimodal understanding. Human perception is inherently multimodal, relying not only on text but also on auditory and visual cues for a complete understanding of the world. In recognition of this fact, audio-visual LLMs have recently emerged. Despite promising developments, the lack of dedicated benchmarks poses challenges for understanding and evaluating models. In this work, we show that audio-visual LLMs struggle to discern subtle relationships between audio and visual signals, leading to hallucinations, underscoring the need for reliable benchmarks. To address this, we introduce AVHBench, the first comprehensive benchmark specifically designed to evaluate the perception and comprehension capabilities of audio-visual LLMs. Our benchmark includes tests for assessing hallucinations, as well as the cross-modal matching and reasoning abilities of these models. Our results reveal that most existing audio-visual LLMs struggle with hallucinations caused by cross-interactions between modalities, due to their limited capacity to perceive complex multimodal signals and their relationships. Additionally, we demonstrate that simple training with our AVHBench improves robustness of audio-visual LLMs against hallucinations.
Abstract:Reconstructing 3D from a single view image is a long-standing challenge. One of the popular approaches to tackle this problem is learning-based methods, but dealing with the test cases unfamiliar with training data (Out-of-distribution; OoD) introduces an additional challenge. To adapt for unseen samples in test time, we propose MeTTA, a test-time adaptation (TTA) exploiting generative prior. We design joint optimization of 3D geometry, appearance, and pose to handle OoD cases with only a single view image. However, the alignment between the reference image and the 3D shape via the estimated viewpoint could be erroneous, which leads to ambiguity. To address this ambiguity, we carefully design learnable virtual cameras and their self-calibration. In our experiments, we demonstrate that MeTTA effectively deals with OoD scenarios at failure cases of existing learning-based 3D reconstruction models and enables obtaining a realistic appearance with physically based rendering (PBR) textures.
Abstract:Diffusion models have achieved remarkable success in Text-to-Image generation tasks, leading to the development of many commercial models. However, recent studies have reported that diffusion models often generate replicated images in train data when triggered by specific prompts, potentially raising social issues ranging from copyright to privacy concerns. To sidestep the memorization, there have been recent studies for developing memorization mitigation methods for diffusion models. Nevertheless, the lack of benchmarks impedes the assessment of the true effectiveness of these methods. In this work, we present MemBench, the first benchmark for evaluating image memorization mitigation methods. Our benchmark includes a large number of memorized image trigger prompts in Stable Diffusion, the most popularly used model nowadays. Furthermore, in contrast to the prior work evaluating mitigation performance only on trigger prompts, we present metrics evaluating on both trigger prompts and general prompts, so that we can see whether mitigation methods address the memorization issue while maintaining performance for general prompts. This is an important development considering the practical applications which previous works have overlooked. Through evaluation on MemBench, we verify that the performance of existing image memorization mitigation methods is still insufficient for application to diffusion models.
Abstract:Recent studies on learning-based sound source localization have mainly focused on the localization performance perspective. However, prior work and existing benchmarks overlook a crucial aspect: cross-modal interaction, which is essential for interactive sound source localization. Cross-modal interaction is vital for understanding semantically matched or mismatched audio-visual events, such as silent objects or off-screen sounds. In this paper, we first comprehensively examine the cross-modal interaction of existing methods, benchmarks, evaluation metrics, and cross-modal understanding tasks. Then, we identify the limitations of previous studies and make several contributions to overcome the limitations. First, we introduce a new synthetic benchmark for interactive sound source localization. Second, we introduce new evaluation metrics to rigorously assess sound source localization methods, focusing on accurately evaluating both localization performance and cross-modal interaction ability. Third, we propose a learning framework with a cross-modal alignment strategy to enhance cross-modal interaction. Lastly, we evaluate both interactive sound source localization and auxiliary cross-modal retrieval tasks together to thoroughly assess cross-modal interaction capabilities and benchmark competing methods. Our new benchmarks and evaluation metrics reveal previously overlooked issues in sound source localization studies. Our proposed novel method, with enhanced cross-modal alignment, shows superior sound source localization performance. This work provides the most comprehensive analysis of sound source localization to date, with extensive validation of competing methods on both existing and new benchmarks using new and standard evaluation metrics.
Abstract:Vision language models (VLMs) perceive the world through a combination of a visual encoder and a large language model (LLM). The visual encoder, pre-trained on large-scale vision-text datasets, provides zero-shot generalization to visual data, and the LLM endows its high reasoning ability to VLMs. It leads VLMs to achieve high performance on wide benchmarks without fine-tuning, exhibiting zero or few-shot capability. However, recent studies show that VLMs are vulnerable to hallucination. This undesirable behavior degrades reliability and credibility, thereby making users unable to fully trust the output from VLMs. To enhance trustworthiness and better tackle the hallucination of VLMs, we curate a new evaluation dataset, called the BEfore-AFter hallucination dataset (BEAF), and introduce new metrics: True Understanding (TU), IGnorance (IG), StuBbornness (SB), and InDecision (ID). Unlike prior works that focus only on constructing questions and answers, the key idea of our benchmark is to manipulate visual scene information by image editing models and to design the metrics based on scene changes. This allows us to clearly assess whether VLMs correctly understand a given scene by observing the ability to perceive changes. We also visualize image-wise object relationship by virtue of our two-axis view: vision and text. Upon evaluating VLMs with our dataset, we observed that our metrics reveal different aspects of VLM hallucination that have not been reported before. Project page: \url{https://beafbench.github.io/}
Abstract:Speech-driven 3D facial animation has recently garnered attention due to its cost-effective usability in multimedia production. However, most current advances overlook the intelligibility of lip movements, limiting the realism of facial expressions. In this paper, we introduce a method for speech-driven 3D facial animation to generate accurate lip movements, proposing an audio-visual multimodal perceptual loss. This loss provides guidance to train the speech-driven 3D facial animators to generate plausible lip motions aligned with the spoken transcripts. Furthermore, to incorporate the proposed audio-visual perceptual loss, we devise an audio-visual lip reading expert leveraging its prior knowledge about correlations between speech and lip motions. We validate the effectiveness of our approach through broad experiments, showing noticeable improvements in lip synchronization and lip readability performance. Codes are available at https://3d-talking-head-avguide.github.io/.