Abstract:We present FPRF, a feed-forward photorealistic style transfer method for large-scale 3D neural radiance fields. FPRF stylizes large-scale 3D scenes with arbitrary, multiple style reference images without additional optimization while preserving multi-view appearance consistency. Prior arts required tedious per-style/-scene optimization and were limited to small-scale 3D scenes. FPRF efficiently stylizes large-scale 3D scenes by introducing a style-decomposed 3D neural radiance field, which inherits AdaIN's feed-forward stylization machinery, supporting arbitrary style reference images. Furthermore, FPRF supports multi-reference stylization with the semantic correspondence matching and local AdaIN, which adds diverse user control for 3D scene styles. FPRF also preserves multi-view consistency by applying semantic matching and style transfer processes directly onto queried features in 3D space. In experiments, we demonstrate that FPRF achieves favorable photorealistic quality 3D scene stylization for large-scale scenes with diverse reference images. Project page: https://kim-geonu.github.io/FPRF/
Abstract:Estimating 3D poses and shapes in the form of meshes from monocular RGB images is challenging. Obviously, it is more difficult than estimating 3D poses only in the form of skeletons or heatmaps. When interacting persons are involved, the 3D mesh reconstruction becomes more challenging due to the ambiguity introduced by person-to-person occlusions. To tackle the challenges, we propose a coarse-to-fine pipeline that benefits from 1) inverse kinematics from the occlusion-robust 3D skeleton estimation and 2) Transformer-based relation-aware refinement techniques. In our pipeline, we first obtain occlusion-robust 3D skeletons for multiple persons from an RGB image. Then, we apply inverse kinematics to convert the estimated skeletons to deformable 3D mesh parameters. Finally, we apply the Transformer-based mesh refinement that refines the obtained mesh parameters considering intra- and inter-person relations of 3D meshes. Via extensive experiments, we demonstrate the effectiveness of our method, outperforming state-of-the-arts on 3DPW, MuPoTS and AGORA datasets.