Abstract:Text-to-video (T2V) diffusion models have shown promising capabilities in synthesizing realistic videos from input text prompts. However, the input text description alone provides limited control over the precise objects movements and camera framing. In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance. While most existing methods choose to fine-tune pre-trained diffusion models to reconstruct the frame differences of the reference video, we observe that such strategy suffer from content leakage from the reference video, and they cannot capture complex motion accurately. To address this issue, we propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level. Instead of using pixel-level objectives, MotionMatcher compares high-level, spatio-temporal motion features to fine-tune diffusion models, ensuring precise motion learning. For the sake of memory efficiency and accessibility, we utilize a pre-trained T2V diffusion model, which contains considerable prior knowledge about video motion, to compute these motion features. In our experiments, we demonstrate state-of-the-art motion customization performances, validating the design of our framework.
Abstract:When performing 3D inpainting using novel-view rendering methods like Neural Radiance Field (NeRF) or 3D Gaussian Splatting (3DGS), how to achieve texture and geometry consistency across camera views has been a challenge. In this paper, we propose a framework of 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency (3DGIC) for cross-view consistent 3D inpainting. Guided by the rendered depth information from each training view, our 3DGIC exploits background pixels visible across different views for updating the inpainting mask, allowing us to refine the 3DGS for inpainting purposes.Through extensive experiments on benchmark datasets, we confirm that our 3DGIC outperforms current state-of-the-art 3D inpainting methods quantitatively and qualitatively.
Abstract:We tackle open-vocabulary 3D scene understanding by introducing a novel data generation pipeline and training framework. Our method addresses three critical requirements for effective training: precise 3D region segmentation, comprehensive textual descriptions, and sufficient dataset scale. By leveraging state-of-the-art open-vocabulary image segmentation models and region-aware Vision-Language Models, we develop an automatic pipeline that generates high-quality 3D mask-text pairs. Applying this pipeline to multiple 3D scene datasets, we create Mosaic3D-5.6M, a dataset of over 30K annotated scenes with 5.6M mask-text pairs, significantly larger than existing datasets. Building upon this data, we propose Mosaic3D, a foundation model combining a 3D encoder trained with contrastive learning and a lightweight mask decoder for open-vocabulary 3D semantic and instance segmentation. Our approach achieves state-of-the-art results on open-vocabulary 3D semantic and instance segmentation tasks including ScanNet200, Matterport3D, and ScanNet++, with ablation studies validating the effectiveness of our large-scale training data.
Abstract:Rigged objects are commonly used in artist pipelines, as they can flexibly adapt to different scenes and postures. However, articulating the rigs into realistic affordance-aware postures (e.g., following the context, respecting the physics and the personalities of the object) remains time-consuming and heavily relies on human labor from experienced artists. In this paper, we tackle the novel problem and design A3Syn. With a given context, such as the environment mesh and a text prompt of the desired posture, A3Syn synthesizes articulation parameters for arbitrary and open-domain rigged objects obtained from the Internet. The task is incredibly challenging due to the lack of training data, and we do not make any topological assumptions about the open-domain rigs. We propose using 2D inpainting diffusion model and several control techniques to synthesize in-context affordance information. Then, we develop an efficient bone correspondence alignment using a combination of differentiable rendering and semantic correspondence. A3Syn has stable convergence, completes in minutes, and synthesizes plausible affordance on different combinations of in-the-wild object rigs and scenes.
Abstract:We present Omni-RGPT, a multimodal large language model designed to facilitate region-level comprehension for both images and videos. To achieve consistent region representation across spatio-temporal dimensions, we introduce Token Mark, a set of tokens highlighting the target regions within the visual feature space. These tokens are directly embedded into spatial regions using region prompts (e.g., boxes or masks) and simultaneously incorporated into the text prompt to specify the target, establishing a direct connection between visual and text tokens. To further support robust video understanding without requiring tracklets, we introduce an auxiliary task that guides Token Mark by leveraging the consistency of the tokens, enabling stable region interpretation across the video. Additionally, we introduce a large-scale region-level video instruction dataset (RegVID-300k). Omni-RGPT achieves state-of-the-art results on image and video-based commonsense reasoning benchmarks while showing strong performance in captioning and referring expression comprehension tasks.
Abstract:Neural speech editing advancements have raised concerns about their misuse in spoofing attacks. Traditional partially edited speech corpora primarily focus on cut-and-paste edits, which, while maintaining speaker consistency, often introduce detectable discontinuities. Recent methods, like A\textsuperscript{3}T and Voicebox, improve transitions by leveraging contextual information. To foster spoofing detection research, we introduce the Speech INfilling Edit (SINE) dataset, created with Voicebox. We detailed the process of re-implementing Voicebox training and dataset creation. Subjective evaluations confirm that speech edited using this novel technique is more challenging to detect than conventional cut-and-paste methods. Despite human difficulty, experimental results demonstrate that self-supervised-based detectors can achieve remarkable performance in detection, localization, and generalization across different edit methods. The dataset and related models will be made publicly available.
Abstract:Recent advancements in object-centric text-to-3D generation have shown impressive results. However, generating complex 3D scenes remains an open challenge due to the intricate relations between objects. Moreover, existing methods are largely based on score distillation sampling (SDS), which constrains the ability to manipulate multiobjects with specific interactions. Addressing these critical yet underexplored issues, we present a novel framework of Scene Graph and Layout Guided 3D Scene Generation (GraLa3D). Given a text prompt describing a complex 3D scene, GraLa3D utilizes LLM to model the scene using a scene graph representation with layout bounding box information. GraLa3D uniquely constructs the scene graph with single-object nodes and composite super-nodes. In addition to constraining 3D generation within the desirable layout, a major contribution lies in the modeling of interactions between objects in a super-node, while alleviating appearance leakage across objects within such nodes. Our experiments confirm that GraLa3D overcomes the above limitations and generates complex 3D scenes closely aligned with text prompts.
Abstract:We propose an efficient radiance field rendering algorithm that incorporates a rasterization process on sparse voxels without neural networks or 3D Gaussians. There are two key contributions coupled with the proposed system. The first is to render sparse voxels in the correct depth order along pixel rays by using dynamic Morton ordering. This avoids the well-known popping artifact found in Gaussian splatting. Second, we adaptively fit sparse voxels to different levels of detail within scenes, faithfully reproducing scene details while achieving high rendering frame rates. Our method improves the previous neural-free voxel grid representation by over 4db PSNR and more than 10x rendering FPS speedup, achieving state-of-the-art comparable novel-view synthesis results. Additionally, our neural-free sparse voxels are seamlessly compatible with grid-based 3D processing algorithms. We achieve promising mesh reconstruction accuracy by integrating TSDF-Fusion and Marching Cubes into our sparse grid system.
Abstract:The recent surge in high-quality visual instruction tuning samples from closed-source vision-language models (VLMs) such as GPT-4V has accelerated the release of open-source VLMs across various model sizes. However, scaling VLMs to improve performance using larger models brings significant computational challenges, especially for deployment on resource-constrained devices like mobile platforms and robots. To address this, we propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes, which prioritizes efficiency without compromising accuracy. VLsI leverages a unique, layer-wise distillation process, introducing intermediate "verbalizers" that map features from each layer to natural language space, allowing smaller VLMs to flexibly align with the reasoning processes of larger VLMs. This approach mitigates the training instability often encountered in output imitation and goes beyond typical final-layer tuning by aligning the small VLMs' layer-wise progression with that of the large ones. We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V without the need for model scaling, merging, or architectural changes.
Abstract:The rapid advancement of generative models has introduced serious risks, including deepfake techniques for facial synthesis and editing. Traditional approaches rely on training classifiers and enhancing generalizability through various feature extraction techniques. Meanwhile, training-free detection methods address issues like limited data and overfitting by directly leveraging statistical properties from vision foundation models to distinguish between real and fake images. The current leading training-free approach, RIGID, utilizes DINOv2 sensitivity to perturbations in image space for detecting fake images, with fake image embeddings exhibiting greater sensitivity than those of real images. This observation prompts us to investigate how detection performance varies across model backbones, perturbation types, and datasets. Our experiments reveal that detection performance is closely linked to model robustness, with self-supervised (SSL) models providing more reliable representations. While Gaussian noise effectively detects general objects, it performs worse on facial images, whereas Gaussian blur is more effective due to potential frequency artifacts. To further improve detection, we introduce Contrastive Blur, which enhances performance on facial images, and MINDER (MINimum distance DetEctoR), which addresses noise type bias, balancing performance across domains. Beyond performance gains, our work offers valuable insights for both the generative and detection communities, contributing to a deeper understanding of model robustness property utilized for deepfake detection.