Abstract:Large-scale vision-language models (VLMs) have shown a strong zero-shot generalization capability on unseen-domain data. However, when adapting pre-trained VLMs to a sequence of downstream tasks, they are prone to forgetting previously learned knowledge and degrade their zero-shot classification capability. To tackle this problem, we propose a unique Selective Dual-Teacher Knowledge Transfer framework that leverages the most recent fine-tuned and the original pre-trained VLMs as dual teachers to preserve the previously learned knowledge and zero-shot capabilities, respectively. With only access to an unlabeled reference dataset, our proposed framework performs a selective knowledge distillation mechanism by measuring the feature discrepancy from the dual teacher VLMs. Consequently, our selective dual-teacher knowledge distillation would mitigate catastrophic forgetting of previously learned knowledge while preserving the zero-shot capabilities from pre-trained VLMs. Through extensive experiments on benchmark datasets, we show that our proposed framework is favorable against state-of-the-art continual learning approaches for preventing catastrophic forgetting and zero-shot degradation.
Abstract:Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept. To perform reliable concept erasure, the properties of robustness and locality are desirable. The former refrains the model from producing images associated with the target concept for any paraphrased or learned prompts, while the latter preserves the model ability in generating images for non-target concepts. In this paper, we propose Reliable Concept Erasing via Lightweight Erasers (Receler), which learns a lightweight Eraser to perform concept erasing and enhances locality and robustness with the proposed concept-localized regularization and adversarial prompt learning, respectively. Comprehensive quantitative and qualitative experiments with various concept prompts verify the superiority of Receler over the previous erasing methods on the above two desirable properties.