Abstract:Recent developments in All-in-One (AiO) RGB image restoration and prompt learning have enabled the representation of distinct degradations through prompts, allowing degraded images to be effectively addressed by a single restoration model. However, this paradigm faces significant challenges when transferring to hyperspectral image (HSI) restoration tasks due to: 1) the domain gap between RGB and HSI features and difference on their structures, 2) information loss in visual prompts under severe composite degradations, and 3) difficulties in capturing HSI-specific degradation representations through text prompts. To address these challenges, we propose PromptHSI, the first universal AiO HSI restoration framework. By leveraging the frequency-aware feature modulation based on characteristics of HSI degradations, we decompose text prompts into intensity and bias controllers to effectively guide the restoration process while avoiding domain gaps. Our unified architecture excels at both fine-grained recovery and global information restoration tasks. Experimental results demonstrate superior performance under various degradation combinations, indicating great potential for practical remote sensing applications. The source code and dataset will be publicly released.
Abstract:Large-scale vision-language models (VLMs) have shown a strong zero-shot generalization capability on unseen-domain data. However, when adapting pre-trained VLMs to a sequence of downstream tasks, they are prone to forgetting previously learned knowledge and degrade their zero-shot classification capability. To tackle this problem, we propose a unique Selective Dual-Teacher Knowledge Transfer framework that leverages the most recent fine-tuned and the original pre-trained VLMs as dual teachers to preserve the previously learned knowledge and zero-shot capabilities, respectively. With only access to an unlabeled reference dataset, our proposed framework performs a selective knowledge distillation mechanism by measuring the feature discrepancy from the dual teacher VLMs. Consequently, our selective dual-teacher knowledge distillation would mitigate catastrophic forgetting of previously learned knowledge while preserving the zero-shot capabilities from pre-trained VLMs. Through extensive experiments on benchmark datasets, we show that our proposed framework is favorable against state-of-the-art continual learning approaches for preventing catastrophic forgetting and zero-shot degradation.
Abstract:Federated Learning (FL) is an emerging paradigm that enables multiple users to collaboratively train a robust model in a privacy-preserving manner without sharing their private data. Most existing approaches of FL only consider traditional single-label image classification, ignoring the impact when transferring the task to multi-label image classification. Nevertheless, it is still challenging for FL to deal with user heterogeneity in their local data distribution in the real-world FL scenario, and this issue becomes even more severe in multi-label image classification. Inspired by the recent success of Transformers in centralized settings, we propose a novel FL framework for multi-label classification. Since partial label correlation may be observed by local clients during training, direct aggregation of locally updated models would not produce satisfactory performances. Thus, we propose a novel FL framework of Language-Guided Transformer (FedLGT) to tackle this challenging task, which aims to exploit and transfer knowledge across different clients for learning a robust global model. Through extensive experiments on various multi-label datasets (e.g., FLAIR, MS-COCO, etc.), we show that our FedLGT is able to achieve satisfactory performance and outperforms standard FL techniques under multi-label FL scenarios. Code is available at https://github.com/Jack24658735/FedLGT.
Abstract:Federated learning (FL) emerges as a decentralized learning framework which trains models from multiple distributed clients without sharing their data to preserve privacy. Recently, large-scale pre-trained models (e.g., Vision Transformer) have shown a strong capability of deriving robust representations. However, the data heterogeneity among clients, the limited computation resources, and the communication bandwidth restrict the deployment of large-scale models in FL frameworks. To leverage robust representations from large-scale models while enabling efficient model personalization for heterogeneous clients, we propose a novel personalized FL framework of client-specific Prompt Generation (pFedPG), which learns to deploy a personalized prompt generator at the server for producing client-specific visual prompts that efficiently adapts frozen backbones to local data distributions. Our proposed framework jointly optimizes the stages of personalized prompt adaptation locally and personalized prompt generation globally. The former aims to train visual prompts that adapt foundation models to each client, while the latter observes local optimization directions to generate personalized prompts for all clients. Through extensive experiments on benchmark datasets, we show that our pFedPG is favorable against state-of-the-art personalized FL methods under various types of data heterogeneity, allowing computation and communication efficient model personalization.
Abstract:To understand how deep neural networks perform classification predictions, recent research attention has been focusing on developing techniques to offer desirable explanations. However, most existing methods cannot be easily applied for semantic segmentation; moreover, they are not designed to offer interpretability under the multi-annotator setting. Instead of viewing ground-truth pixel-level labels annotated by a single annotator with consistent labeling tendency, we aim at providing interpretable semantic segmentation and answer two critical yet practical questions: "who" contributes to the resulting segmentation, and "why" such an assignment is determined. In this paper, we present a learning framework of Tendency-and-Assignment Explainer (TAX), designed to offer interpretability at the annotator and assignment levels. More specifically, we learn convolution kernel subsets for modeling labeling tendencies of each type of annotation, while a prototype bank is jointly observed to offer visual guidance for learning the above kernels. For evaluation, we consider both synthetic and real-world datasets with multi-annotators. We show that our TAX can be applied to state-of-the-art network architectures with comparable performances, while segmentation interpretability at both levels can be offered accordingly.
Abstract:While self-supervised learning has been shown to benefit a number of vision tasks, existing techniques mainly focus on image-level manipulation, which may not generalize well to downstream tasks at patch or pixel levels. Moreover, existing SSL methods might not sufficiently describe and associate the above representations within and across image scales. In this paper, we propose a Self-Supervised Pyramid Representation Learning (SS-PRL) framework. The proposed SS-PRL is designed to derive pyramid representations at patch levels via learning proper prototypes, with additional learners to observe and relate inherent semantic information within an image. In particular, we present a cross-scale patch-level correlation learning in SS-PRL, which allows the model to aggregate and associate information learned across patch scales. We show that, with our proposed SS-PRL for model pre-training, one can easily adapt and fine-tune the models for a variety of applications including multi-label classification, object detection, and instance segmentation.
Abstract:Few-shot classification aims to carry out classification given only few labeled examples for the categories of interest. Though several approaches have been proposed, most existing few-shot learning (FSL) models assume that base and novel classes are drawn from the same data domain. When it comes to recognizing novel-class data in an unseen domain, this becomes an even more challenging task of domain generalized few-shot classification. In this paper, we present a unique learning framework for domain-generalized few-shot classification, where base classes are from homogeneous multiple source domains, while novel classes to be recognized are from target domains which are not seen during training. By advancing meta-learning strategies, our learning framework exploits data across multiple source domains to capture domain-invariant features, with FSL ability introduced by metric-learning based mechanisms across support and query data. We conduct extensive experiments to verify the effectiveness of our proposed learning framework and show learning from small yet homogeneous source data is able to perform preferably against learning from large-scale one. Moreover, we provide insights into choices of backbone models for domain-generalized few-shot classification.
Abstract:Few-shot semantic segmentation addresses the learning task in which only few images with ground truth pixel-level labels are available for the novel classes of interest. One is typically required to collect a large mount of data (i.e., base classes) with such ground truth information, followed by meta-learning strategies to address the above learning task. When only image-level semantic labels can be observed during both training and testing, it is considered as an even more challenging task of weakly supervised few-shot semantic segmentation. To address this problem, we propose a novel meta-learning framework, which predicts pseudo pixel-level segmentation masks from a limited amount of data and their semantic labels. More importantly, our learning scheme further exploits the produced pixel-level information for query image inputs with segmentation guarantees. Thus, our proposed learning model can be viewed as a pixel-level meta-learner. Through extensive experiments on benchmark datasets, we show that our model achieves satisfactory performances under fully supervised settings, yet performs favorably against state-of-the-art methods under weakly supervised settings.
Abstract:Generating videos with content and motion variations is a challenging task in computer vision. While the recent development of GAN allows video generation from latent representations, it is not easy to produce videos with particular content of motion patterns of interest. In this paper, we propose Dual Motion Transfer GAN (Dual-MTGAN), which takes image and video data as inputs while learning disentangled content and motion representations. Our Dual-MTGAN is able to perform deterministic motion transfer and stochastic motion generation. Based on a given image, the former preserves the input content and transfers motion patterns observed from another video sequence, and the latter directly produces videos with plausible yet diverse motion patterns based on the input image. The proposed model is trained in an end-to-end manner, without the need to utilize pre-defined motion features like pose or facial landmarks. Our quantitative and qualitative results would confirm the effectiveness and robustness of our model in addressing such conditioned image-to-video tasks.
Abstract:Learning interpretable and interpolatable latent representations has been an emerging research direction, allowing researchers to understand and utilize the derived latent space for further applications such as visual synthesis or recognition. While most existing approaches derive an interpolatable latent space and induces smooth transition in image appearance, it is still not clear how to observe desirable representations which would contain semantic information of interest. In this paper, we aim to learn meaningful representations and simultaneously perform semantic-oriented and visually-smooth interpolation. To this end, we propose an angular triplet-neighbor loss (ATNL) that enables learning a latent representation whose distribution matches the semantic information of interest. With the latent space guided by ATNL, we further utilize spherical semantic interpolation for generating semantic warping of images, allowing synthesis of desirable visual data. Experiments on MNIST and CMU Multi-PIE datasets qualitatively and quantitatively verify the effectiveness of our method.