Abstract:We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events. Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.
Abstract:Large-scale vision-language models (VLMs) have shown a strong zero-shot generalization capability on unseen-domain data. However, when adapting pre-trained VLMs to a sequence of downstream tasks, they are prone to forgetting previously learned knowledge and degrade their zero-shot classification capability. To tackle this problem, we propose a unique Selective Dual-Teacher Knowledge Transfer framework that leverages the most recent fine-tuned and the original pre-trained VLMs as dual teachers to preserve the previously learned knowledge and zero-shot capabilities, respectively. With only access to an unlabeled reference dataset, our proposed framework performs a selective knowledge distillation mechanism by measuring the feature discrepancy from the dual teacher VLMs. Consequently, our selective dual-teacher knowledge distillation would mitigate catastrophic forgetting of previously learned knowledge while preserving the zero-shot capabilities from pre-trained VLMs. Through extensive experiments on benchmark datasets, we show that our proposed framework is favorable against state-of-the-art continual learning approaches for preventing catastrophic forgetting and zero-shot degradation.
Abstract:Semi-Supervised Domain Adaptation (SSDA) involves learning to classify unseen target data with a few labeled and lots of unlabeled target data, along with many labeled source data from a related domain. Current SSDA approaches usually aim at aligning the target data to the labeled source data with feature space mapping and pseudo-label assignments. Nevertheless, such a source-oriented model can sometimes align the target data to source data of the wrong classes, degrading the classification performance. This paper presents a novel source-adaptive paradigm that adapts the source data to match the target data. Our key idea is to view the source data as a noisily-labeled version of the ideal target data. Then, we propose an SSDA model that cleans up the label noise dynamically with the help of a robust cleaner component designed from the target perspective. Since the paradigm is very different from the core ideas behind existing SSDA approaches, our proposed model can be easily coupled with them to improve their performance. Empirical results on two state-of-the-art SSDA approaches demonstrate that the proposed model effectively cleans up the noise within the source labels and exhibits superior performance over those approaches across benchmark datasets.