Abstract:High-resolution hyperspectral imaging plays a crucial role in various remote sensing applications, yet its acquisition often faces fundamental limitations due to hardware constraints. This paper introduces S$^{3}$RNet, a novel framework for hyperspectral image pansharpening that effectively combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation. The core of S$^{3}$RNet is the Multi-Branch Fusion Network (MBFN), which employs parallel branches to capture complementary features at different spatial and spectral scales. Unlike traditional approaches that treat all features equally, our Spatial-Spectral Attention Weight Block (SSAWB) dynamically adjusts feature weights to maintain sparse representation while suppressing noise and redundancy. To enhance feature propagation, we incorporate the Dense Feature Aggregation Block (DFAB), which efficiently aggregates inputted features through dense connectivity patterns. This integrated design enables S$^{3}$RNet to selectively emphasize the most informative features from differnt scale while maintaining computational efficiency. Comprehensive experiments demonstrate that S$^{3}$RNet achieves state-of-the-art performance across multiple evaluation metrics, showing particular strength in maintaining high reconstruction quality even under challenging noise conditions. The code will be made publicly available.
Abstract:Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs), a critical task given the high costs and hardware limitations associated with acquiring high-quality HSIs. While existing methods leverage spatial and spectral relationships, they often suffer from limited receptive fields and insufficient feature utilization, leading to suboptimal performance. Furthermore, the scarcity of high-quality HSI data highlights the importance of efficient data utilization to maximize reconstruction quality. To address these issues, we propose HyFusion, a novel framework designed to enhance the receptive field and enable effective feature map reusing, thereby maximizing data utilization. First, HR-MSI and LR-HSI inputs are concatenated to form a quasi-fused draft, preserving complementary spatial and spectral details. Next, the Enhanced Reception Field Block (ERFB) is introduced, combining shifting-window attention and dense connections to expand the receptive field, effectively capturing long-range dependencies and reusing features to reduce information loss, thereby boosting data efficiency. Finally, the Dual-Coupled Network (DCN) dynamically extracts high-frequency spectral and spatial features from LR-HSI and HR-MSI, ensuring efficient cross-domain fusion. Extensive experiments demonstrate that HyFusion achieves state-of-the-art performance in HR-MSI/LR-HSI fusion, significantly improving reconstruction quality while maintaining a compact model size and computational efficiency. By integrating enhanced receptive fields and feature map reusing, HyFusion provides a practical and effective solution for HSI fusion in resource-constrained scenarios, setting a new benchmark in hyperspectral imaging. Our code will be publicly available.
Abstract:Accurate detection and segmentation of gastrointestinal bleeding are critical for diagnosing diseases such as peptic ulcers and colorectal cancer. This study proposes a two-stage framework that decouples classification and grounding to address the inherent challenges posed by traditional Multi-Task Learning models, which jointly optimizes classification and segmentation. Our approach separates these tasks to achieve targeted optimization for each. The model first classifies images as bleeding or non-bleeding, thereby isolating subsequent grounding from inter-task interference and label heterogeneity. To further enhance performance, we incorporate Stochastic Weight Averaging and Test-Time Augmentation, which improve model robustness against domain shifts and annotation inconsistencies. Our method is validated on the Auto-WCEBleedGen Challenge V2 Challenge dataset and achieving second place. Experimental results demonstrate significant improvements in classification accuracy and segmentation precision, especially on sequential datasets with consistent visual patterns. This study highlights the practical benefits of a two-stage strategy for medical image analysis and sets a new standard for GI bleeding detection and segmentation. Our code is publicly available at this GitHub repository.
Abstract:Recent developments in All-in-One (AiO) RGB image restoration and prompt learning have enabled the representation of distinct degradations through prompts, allowing degraded images to be effectively addressed by a single restoration model. However, this paradigm faces significant challenges when transferring to hyperspectral image (HSI) restoration tasks due to: 1) the domain gap between RGB and HSI features and difference on their structures, 2) information loss in visual prompts under severe composite degradations, and 3) difficulties in capturing HSI-specific degradation representations through text prompts. To address these challenges, we propose PromptHSI, the first universal AiO HSI restoration framework. By leveraging the frequency-aware feature modulation based on characteristics of HSI degradations, we decompose text prompts into intensity and bias controllers to effectively guide the restoration process while avoiding domain gaps. Our unified architecture excels at both fine-grained recovery and global information restoration tasks. Experimental results demonstrate superior performance under various degradation combinations, indicating great potential for practical remote sensing applications. The source code and dataset will be publicly released.
Abstract:Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn. Effective monitoring and accurate detection of FHB are crucial to ensuring stable and reliable food security. Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale. With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution. Notably, wheat infected with serious FHB may exhibit significant differences on the spectral compared to mild FHB one, which is particularly advantageous for hyperspectral image-based methods. In this study, we propose a self-unsupervised classification method based on HSI endmember extraction strategy and top-K bands selection, designed to analyze material signatures in HSIs to derive discriminative feature representations. This approach does not require expensive device or complicate algorithm design, making it more suitable for practical uses. Our method has been effectively validated in the Beyond Visible Spectrum: AI for Agriculture Challenge 2024. The source code is easy to reproduce and available at {https://github.com/VanLinLin/Automated-Crop-Disease-Diagnosis-from-Hyperspectral-Imagery-3rd}.