Abstract:Recent developments in All-in-One (AiO) RGB image restoration and prompt learning have enabled the representation of distinct degradations through prompts, allowing degraded images to be effectively addressed by a single restoration model. However, this paradigm faces significant challenges when transferring to hyperspectral image (HSI) restoration tasks due to: 1) the domain gap between RGB and HSI features and difference on their structures, 2) information loss in visual prompts under severe composite degradations, and 3) difficulties in capturing HSI-specific degradation representations through text prompts. To address these challenges, we propose PromptHSI, the first universal AiO HSI restoration framework. By leveraging the frequency-aware feature modulation based on characteristics of HSI degradations, we decompose text prompts into intensity and bias controllers to effectively guide the restoration process while avoiding domain gaps. Our unified architecture excels at both fine-grained recovery and global information restoration tasks. Experimental results demonstrate superior performance under various degradation combinations, indicating great potential for practical remote sensing applications. The source code and dataset will be publicly released.
Abstract:Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn. Effective monitoring and accurate detection of FHB are crucial to ensuring stable and reliable food security. Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale. With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution. Notably, wheat infected with serious FHB may exhibit significant differences on the spectral compared to mild FHB one, which is particularly advantageous for hyperspectral image-based methods. In this study, we propose a self-unsupervised classification method based on HSI endmember extraction strategy and top-K bands selection, designed to analyze material signatures in HSIs to derive discriminative feature representations. This approach does not require expensive device or complicate algorithm design, making it more suitable for practical uses. Our method has been effectively validated in the Beyond Visible Spectrum: AI for Agriculture Challenge 2024. The source code is easy to reproduce and available at {https://github.com/VanLinLin/Automated-Crop-Disease-Diagnosis-from-Hyperspectral-Imagery-3rd}.