Abstract:Hyperspectral image (HSI) fusion aims to reconstruct a high-resolution HSI (HR-HSI) by combining the rich spectral information of a low-resolution HSI (LR-HSI) with the fine spatial details of a high-resolution multispectral image (HR-MSI). Although recent deep learning methods have achieved notable progress, they still suffer from limited receptive fields, redundant spectral bands, and the quadratic complexity of self-attention, which restrict both efficiency and robustness. To overcome these challenges, we propose the Hierarchical Spatial-Spectral Dense Correlation Network (HSSDCT). The framework introduces two key modules: (i) a Hierarchical Dense-Residue Transformer Block (HDRTB) that progressively enlarges windows and employs dense-residue connections for multi-scale feature aggregation, and (ii) a Spatial-Spectral Correlation Layer (SSCL) that explicitly factorizes spatial and spectral dependencies, reducing self-attention to linear complexity while mitigating spectral redundancy. Extensive experiments on benchmark datasets demonstrate that HSSDCT delivers superior reconstruction quality with significantly lower computational costs, achieving new state-of-the-art performance in HSI fusion. Our code is available at https://github.com/jemmyleee/HSSDCT.
Abstract:Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs), a critical task given the high costs and hardware limitations associated with acquiring high-quality HSIs. While existing methods leverage spatial and spectral relationships, they often suffer from limited receptive fields and insufficient feature utilization, leading to suboptimal performance. Furthermore, the scarcity of high-quality HSI data highlights the importance of efficient data utilization to maximize reconstruction quality. To address these issues, we propose HyFusion, a novel framework designed to enhance the receptive field and enable effective feature map reusing, thereby maximizing data utilization. First, HR-MSI and LR-HSI inputs are concatenated to form a quasi-fused draft, preserving complementary spatial and spectral details. Next, the Enhanced Reception Field Block (ERFB) is introduced, combining shifting-window attention and dense connections to expand the receptive field, effectively capturing long-range dependencies and reusing features to reduce information loss, thereby boosting data efficiency. Finally, the Dual-Coupled Network (DCN) dynamically extracts high-frequency spectral and spatial features from LR-HSI and HR-MSI, ensuring efficient cross-domain fusion. Extensive experiments demonstrate that HyFusion achieves state-of-the-art performance in HR-MSI/LR-HSI fusion, significantly improving reconstruction quality while maintaining a compact model size and computational efficiency. By integrating enhanced receptive fields and feature map reusing, HyFusion provides a practical and effective solution for HSI fusion in resource-constrained scenarios, setting a new benchmark in hyperspectral imaging. Our code will be publicly available.