Abstract:Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn. Effective monitoring and accurate detection of FHB are crucial to ensuring stable and reliable food security. Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale. With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution. Notably, wheat infected with serious FHB may exhibit significant differences on the spectral compared to mild FHB one, which is particularly advantageous for hyperspectral image-based methods. In this study, we propose a self-unsupervised classification method based on HSI endmember extraction strategy and top-K bands selection, designed to analyze material signatures in HSIs to derive discriminative feature representations. This approach does not require expensive device or complicate algorithm design, making it more suitable for practical uses. Our method has been effectively validated in the Beyond Visible Spectrum: AI for Agriculture Challenge 2024. The source code is easy to reproduce and available at {https://github.com/VanLinLin/Automated-Crop-Disease-Diagnosis-from-Hyperspectral-Imagery-3rd}.
Abstract:As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
Abstract:Hyperspectral imaging, capturing detailed spectral information for each pixel, is pivotal in diverse scientific and industrial applications. Yet, the acquisition of high-resolution (HR) hyperspectral images (HSIs) often needs to be addressed due to the hardware limitations of existing imaging systems. A prevalent workaround involves capturing both a high-resolution multispectral image (HR-MSI) and a low-resolution (LR) HSI, subsequently fusing them to yield the desired HR-HSI. Although deep learning-based methods have shown promising in HR-MSI/LR-HSI fusion and LR-HSI super-resolution (SR), their substantial model complexities hinder deployment on resource-constrained imaging devices. This paper introduces a novel knowledge distillation (KD) framework for HR-MSI/LR-HSI fusion to achieve SR of LR-HSI. Our KD framework integrates the proposed Cross-Layer Residual Aggregation (CLRA) block to enhance efficiency for constructing Dual Two-Streamed (DTS) network structure, designed to extract joint and distinct features from LR-HSI and HR-MSI simultaneously. To fully exploit the spatial and spectral feature representations of LR-HSI and HR-MSI, we propose a novel Cross Self-Attention (CSA) fusion module to adaptively fuse those features to improve the spatial and spectral quality of the reconstructed HR-HSI. Finally, the proposed KD-based joint loss function is employed to co-train the teacher and student networks. Our experimental results demonstrate that the student model not only achieves comparable or superior LR-HSI SR performance but also significantly reduces the model-size and computational requirements. This marks a substantial advancement over existing state-of-the-art methods. The source code is available at https://github.com/ming053l/CSAKD.
Abstract:This paper addresses the challenges associated with hyperspectral image (HSI) reconstruction from miniaturized satellites, which often suffer from stripe effects and are computationally resource-limited. We propose a Real-Time Compressed Sensing (RTCS) network designed to be lightweight and require only relatively few training samples for efficient and robust HSI reconstruction in the presence of the stripe effect and under noisy transmission conditions. The RTCS network features a simplified architecture that reduces the required training samples and allows for easy implementation on integer-8-based encoders, facilitating rapid compressed sensing for stripe-like HSI, which exactly matches the moderate design of miniaturized satellites on push broom scanning mechanism. This contrasts optimization-based models that demand high-precision floating-point operations, making them difficult to deploy on edge devices. Our encoder employs an integer-8-compatible linear projection for stripe-like HSI data transmission, ensuring real-time compressed sensing. Furthermore, based on the novel two-streamed architecture, an efficient HSI restoration decoder is proposed for the receiver side, allowing for edge-device reconstruction without needing a sophisticated central server. This is particularly crucial as an increasing number of miniaturized satellites necessitates significant computing resources on the ground station. Extensive experiments validate the superior performance of our approach, offering new and vital capabilities for existing miniaturized satellite systems.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:This paper reviews the NTIRE 2024 challenge on image super-resolution ($\times$4), highlighting the solutions proposed and the outcomes obtained. The challenge involves generating corresponding high-resolution (HR) images, magnified by a factor of four, from low-resolution (LR) inputs using prior information. The LR images originate from bicubic downsampling degradation. The aim of the challenge is to obtain designs/solutions with the most advanced SR performance, with no constraints on computational resources (e.g., model size and FLOPs) or training data. The track of this challenge assesses performance with the PSNR metric on the DIV2K testing dataset. The competition attracted 199 registrants, with 20 teams submitting valid entries. This collective endeavour not only pushes the boundaries of performance in single-image SR but also offers a comprehensive overview of current trends in this field.
Abstract:In recent years, Vision Transformer-based approaches for low-level vision tasks have achieved widespread success. Unlike CNN-based models, Transformers are more adept at capturing long-range dependencies, enabling the reconstruction of images utilizing non-local information. In the domain of super-resolution, Swin-transformer-based models have become mainstream due to their capability of global spatial information modeling and their shifting-window attention mechanism that facilitates the interchange of information between different windows. Many researchers have enhanced model performance by expanding the receptive fields or designing meticulous networks, yielding commendable results. However, we observed that it is a general phenomenon for the feature map intensity to be abruptly suppressed to small values towards the network's end. This implies an information bottleneck and a diminishment of spatial information, implicitly limiting the model's potential. To address this, we propose the Dense-residual-connected Transformer (DRCT), aimed at mitigating the loss of spatial information and stabilizing the information flow through dense-residual connections between layers, thereby unleashing the model's potential and saving the model away from information bottleneck. Experiment results indicate that our approach surpasses state-of-the-art methods on benchmark datasets and performs commendably at the NTIRE-2024 Image Super-Resolution (x4) Challenge. Our source code is available at https://github.com/ming053l/DRCT
Abstract:Traditional defect classification approaches are facing with two barriers. (1) Insufficient training data and unstable data quality. Collecting sufficient defective sample is expensive and time-costing, consequently leading to dataset variance. It introduces the difficulty on recognition and learning. (2) Over-dependence on visual modality. When the image pattern and texture is monotonic for all defect classes in a given dataset, the performance of conventional AOI system cannot be guaranteed. In scenarios where image quality is compromised due to mechanical failures or when defect information is inherently difficult to discern, the performance of deep models cannot be guaranteed. A main question is, "how to solve those two problems when they occur at the same time?" The feasible strategy is to explore another feature within dataset and combine an eminent vision-language model (VLM) and Large-Language model (LLM) with their astonishing zero-shot capability. In this work, we propose the special ASE dataset, including rich data description recorded on image, for defect classification, but the defect feature is uneasy to learn directly. Secondly, We present the prompting for VLM-LLM against defect classification with the proposed ASE dataset to activate extra-modality feature from images to enhance performance. Then, We design the novel progressive feature alignment (PFA) block to refine image-text feature to alleviate the difficulty of alignment under few-shot scenario. Finally, the proposed Cross-modality attention fusion (CMAF) module can effectively fuse different modality feature. Experiment results have demonstrated our method's effectiveness over several defect classification methods for the ASE dataset.
Abstract:Conventional Computed Tomography (CT) imaging recognition faces two significant challenges: (1) There is often considerable variability in the resolution and size of each CT scan, necessitating strict requirements for the input size and adaptability of models. (2) CT-scan contains large number of out-of-distribution (OOD) slices. The crucial features may only be present in specific spatial regions and slices of the entire CT scan. How can we effectively figure out where these are located? To deal with this, we introduce an enhanced Spatial-Slice Feature Learning (SSFL++) framework specifically designed for CT scan. It aim to filter out a OOD data within whole CT scan, enabling our to select crucial spatial-slice for analysis by reducing 70% redundancy totally. Meanwhile, we proposed Kernel-Density-based slice Sampling (KDS) method to improve the stability when training and inference stage, therefore speeding up the rate of convergence and boosting performance. As a result, the experiments demonstrate the promising performance of our model using a simple EfficientNet-2D (E2D) model, even with only 1% of the training data. The efficacy of our approach has been validated on the COVID-19-CT-DB datasets provided by the DEF-AI-MIA workshop, in conjunction with CVPR 2024. Our source code will be made available.
Abstract:Instance segmentation, a cornerstone task in computer vision, has wide-ranging applications in diverse industries. The advent of deep learning and artificial intelligence has underscored the criticality of training effective models, particularly in data-scarce scenarios - a concern that resonates in both academic and industrial circles. A significant impediment in this domain is the resource-intensive nature of procuring high-quality, annotated data for instance segmentation, a hurdle that amplifies the challenge of developing robust models under resource constraints. In this context, the strategic integration of a visual prior into the training dataset emerges as a potential solution to enhance congruity with the testing data distribution, consequently reducing the dependency on computational resources and the need for highly complex models. However, effectively embedding a visual prior into the learning process remains a complex endeavor. Addressing this challenge, we introduce the MISS (Memory-efficient Instance Segmentation System) framework. MISS leverages visual inductive prior flow propagation, integrating intrinsic prior knowledge from the Synergy-basketball dataset at various stages: data preprocessing, augmentation, training, and inference. Our empirical evaluations underscore the efficacy of MISS, demonstrating commendable performance in scenarios characterized by limited data availability and memory constraints.