Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:This paper reports on the NTIRE 2023 Quality Assessment of Video Enhancement Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2023. This challenge is to address a major challenge in the field of video processing, namely, video quality assessment (VQA) for enhanced videos. The challenge uses the VQA Dataset for Perceptual Video Enhancement (VDPVE), which has a total of 1211 enhanced videos, including 600 videos with color, brightness, and contrast enhancements, 310 videos with deblurring, and 301 deshaked videos. The challenge has a total of 167 registered participants. 61 participating teams submitted their prediction results during the development phase, with a total of 3168 submissions. A total of 176 submissions were submitted by 37 participating teams during the final testing phase. Finally, 19 participating teams submitted their models and fact sheets, and detailed the methods they used. Some methods have achieved better results than baseline methods, and the winning methods have demonstrated superior prediction performance.
Abstract:Measuring the perceptual quality of images automatically is an essential task in the area of computer vision, as degradations on image quality can exist in many processes from image acquisition, transmission to enhancing. Many Image Quality Assessment(IQA) algorithms have been designed to tackle this problem. However, it still remains un settled due to the various types of image distortions and the lack of large-scale human-rated datasets. In this paper, we propose a novel algorithm based on the Swin Transformer [31] with fused features from multiple stages, which aggregates information from both local and global features to better predict the quality. To address the issues of small-scale datasets, relative rankings of images have been taken into account together with regression loss to simultaneously optimize the model. Furthermore, effective data augmentation strategies are also used to improve the performance. In comparisons with previous works, experiments are carried out on two standard IQA datasets and a challenge dataset. The results demonstrate the effectiveness of our work. The proposed method outperforms other methods on standard datasets and ranks 2nd in the no-reference track of NTIRE 2022 Perceptual Image Quality Assessment Challenge [53]. It verifies that our method is promising in solving diverse IQA problems and thus can be used to real-word applications.