Abstract:Large language models (LLMs) have revolutionized natural language processing (NLP) with impressive performance across various text-based tasks. However, the extension of text-dominant LLMs to with speech generation tasks remains under-explored. In this work, we introduce a text-to-speech (TTS) system powered by a fine-tuned Llama model, named TTS-Llama, that achieves state-of-the-art speech synthesis performance. Building on TTS-Llama, we further propose MoLE-Llama, a text-and-speech multimodal LLM developed through purely late-fusion parameter-efficient fine-tuning (PEFT) and a mixture-of-expert architecture. Extensive empirical results demonstrate MoLE-Llama's competitive performance on both text-only question-answering (QA) and TTS tasks, mitigating catastrophic forgetting issue in either modality. Finally, we further explore MoLE-Llama in text-in-speech-out QA tasks, demonstrating its great potential as a multimodal dialog system capable of speech generation.
Abstract:Tokenising continuous speech into sequences of discrete tokens and modelling them with language models (LMs) has led to significant success in text-to-speech (TTS) synthesis. Although these models can generate speech with high quality and naturalness, their synthesised samples can still suffer from artefacts, mispronunciation, word repeating, etc. In this paper, we argue these undesirable properties could partly be caused by the randomness of sampling-based strategies during the autoregressive decoding of LMs. Therefore, we look at maximisation-based decoding approaches and propose Temporal Repetition Aware Diverse Beam Search (TRAD-BS) to find the most probable sequences of the generated speech tokens. Experiments with two state-of-the-art LM-based TTS models demonstrate that our proposed maximisation-based decoding strategy generates speech with fewer mispronunciations and improved speaker consistency.
Abstract:User Generated Content (UGC) videos are susceptible to complicated and variant degradations and contents, which prevents the existing blind video quality assessment (BVQA) models from good performance since the lack of the adapability of distortions and contents. To mitigate this, we propose a novel prior-augmented perceptual vision transformer (PriorFormer) for the BVQA of UGC, which boots its adaptability and representation capability for divergent contents and distortions. Concretely, we introduce two powerful priors, i.e., the content and distortion priors, by extracting the content and distortion embeddings from two pre-trained feature extractors. Then we adopt these two powerful embeddings as the adaptive prior tokens, which are transferred to the vision transformer backbone jointly with implicit quality features. Based on the above strategy, the proposed PriorFormer achieves state-of-the-art performance on three public UGC VQA datasets including KoNViD-1K, LIVE-VQC and YouTube-UGC.
Abstract:In this work, we take the first exploration of the recently popular foundation model, i.e., State Space Model/Mamba, in image quality assessment, aiming at observing and excavating the perception potential in vision Mamba. A series of works on Mamba has shown its significant potential in various fields, e.g., segmentation and classification. However, the perception capability of Mamba has been under-explored. Consequently, we propose Q-Mamba by revisiting and adapting the Mamba model for three crucial IQA tasks, i.e., task-specific, universal, and transferable IQA, which reveals that the Mamba model has obvious advantages compared with existing foundational models, e.g., Swin Transformer, ViT, and CNNs, in terms of perception and computational cost for IQA. To increase the transferability of Q-Mamba, we propose the StylePrompt tuning paradigm, where the basic lightweight mean and variance prompts are injected to assist the task-adaptive transfer learning of pre-trained Q-Mamba for different downstream IQA tasks. Compared with existing prompt tuning strategies, our proposed StylePrompt enables better perception transfer capability with less computational cost. Extensive experiments on multiple synthetic, authentic IQA datasets, and cross IQA datasets have demonstrated the effectiveness of our proposed Q-Mamba.
Abstract:Blind Compressed Image Restoration (CIR) has garnered significant attention due to its practical applications. It aims to mitigate compression artifacts caused by unknown quality factors, particularly with JPEG codecs. Existing works on blind CIR often seek assistance from a quality factor prediction network to facilitate their network to restore compressed images. However, the predicted numerical quality factor lacks spatial information, preventing network adaptability toward image contents. Recent studies in prompt-learning-based image restoration have showcased the potential of prompts to generalize across varied degradation types and degrees. This motivated us to design a prompt-learning-based compressed image restoration network, dubbed PromptCIR, which can effectively restore images from various compress levels. Specifically, PromptCIR exploits prompts to encode compression information implicitly, where prompts directly interact with soft weights generated from image features, thus providing dynamic content-aware and distortion-aware guidance for the restoration process. The light-weight prompts enable our method to adapt to different compression levels, while introducing minimal parameter overhead. Overall, PromptCIR leverages the powerful transformer-based backbone with the dynamic prompt module to proficiently handle blind CIR tasks, winning first place in the NTIRE 2024 challenge of blind compressed image enhancement track. Extensive experiments have validated the effectiveness of our proposed PromptCIR. The code is available at https://github.com/lbc12345/PromptCIR-NTIRE24.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:At present, large multimodal models (LMMs) have exhibited impressive generalization capabilities in understanding and generating visual signals. However, they currently still lack sufficient capability to perceive low-level visual quality akin to human perception. Can LMMs achieve this and show the same degree of generalization in this regard? If so, not only could the versatility of LMMs be further enhanced, but also the challenge of poor cross-dataset performance in the field of visual quality assessment could be addressed. In this paper, we explore this question and provide the answer "Yes!". As the result of this initial exploration, we present VisualCritic, the first LMM for broad-spectrum image subjective quality assessment. VisualCritic can be used across diverse data right out of box, without any requirements of dataset-specific adaptation operations like conventional specialist models. As an instruction-following LMM, VisualCritic enables new capabilities of (1) quantitatively measuring the perceptual quality of given images in terms of their Mean Opinion Score (MOS), noisiness, colorfulness, sharpness, and other numerical indicators, (2) qualitatively evaluating visual quality and providing explainable descriptions, (3) discerning whether a given image is AI-generated or photographic. Extensive experiments demonstrate the efficacy of VisualCritic by comparing it with other open-source LMMs and conventional specialist models over both AI-generated and photographic images.
Abstract:Short-form UGC video platforms, like Kwai and TikTok, have been an emerging and irreplaceable mainstream media form, thriving on user-friendly engagement, and kaleidoscope creation, etc. However, the advancing content-generation modes, e.g., special effects, and sophisticated processing workflows, e.g., de-artifacts, have introduced significant challenges to recent UGC video quality assessment: (i) the ambiguous contents hinder the identification of quality-determined regions. (ii) the diverse and complicated hybrid distortions are hard to distinguish. To tackle the above challenges and assist in the development of short-form videos, we establish the first large-scale Kaleidoscope short Video database for Quality assessment, termed KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos through the diverse practical processing workflows, including pre-processing, transcoding, and enhancement. Among them, the absolute quality score of each video and partial ranking score among indistinguishable samples are provided by a team of professional researchers specializing in image processing. Based on this database, we propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models (i.e., CLIP) and distinguish the distortions with the distortion understanding module. Experimental results have shown the effectiveness of KSVQE on our KVQ database and popular VQA databases.
Abstract:The objective of non-reference video quality assessment is to evaluate the quality of distorted video without access to reference high-definition references. In this study, we introduce an enhanced spatial perception module, pre-trained on multiple image quality assessment datasets, and a lightweight temporal fusion module to address the no-reference visual quality assessment (NR-VQA) task. This model implements Swin Transformer V2 as a local-level spatial feature extractor and fuses these multi-stage representations through a series of transformer layers. Furthermore, a temporal transformer is utilized for spatiotemporal feature fusion across the video. To accommodate compressed videos of varying bitrates, we incorporate a coarse-to-fine contrastive strategy to enrich the model's capability to discriminate features from videos of different bitrates. This is an expanded version of the one-page abstract.
Abstract:In FMCW automotive radar applications, it is often a challenge to design a chirp sequence that satisfies the requirements set by practical driving scenarios and simultaneously enables high range resolution, large maximum range, and unambiguous velocity estimation. To support long-range scenarios the chirps should have a sufficiently long duration compared to their bandwidth. At the same time, the long chirps result in ambiguous velocity estimation for targets with high velocity. The problem of velocity ambiguity is often solved by using multiple chirp sequences with co-prime delay shifts between them. However, coherent processing of multiple chirp sequences is not possible using classical spectral estimation techniques based on Fast Fourier Transform (FFT). This results in statistically not efficient velocity estimation and loss of processing gain. In this work, we propose an algorithm that can jointly process multiple chirp sequences and resolve possible ambiguities present in the velocities estimates. The resulting algorithm is statistically efficient and gridless. Furthermore, it increases the resolution of velocity estimation beyond the natural resolution due to its super-resolution properties. These results are confirmed by both numerical simulations and experiments with automotive radar IC.