Abstract:We introduce a new paradigm for AutoRegressive (AR) image generation, termed Set AutoRegressive Modeling (SAR). SAR generalizes the conventional AR to the next-set setting, i.e., splitting the sequence into arbitrary sets containing multiple tokens, rather than outputting each token in a fixed raster order. To accommodate SAR, we develop a straightforward architecture termed Fully Masked Transformer. We reveal that existing AR variants correspond to specific design choices of sequence order and output intervals within the SAR framework, with AR and Masked AR (MAR) as two extreme instances. Notably, SAR facilitates a seamless transition from AR to MAR, where intermediate states allow for training a causal model that benefits from both few-step inference and KV cache acceleration, thus leveraging the advantages of both AR and MAR. On the ImageNet benchmark, we carefully explore the properties of SAR by analyzing the impact of sequence order and output intervals on performance, as well as the generalization ability regarding inference order and steps. We further validate the potential of SAR by training a 900M text-to-image model capable of synthesizing photo-realistic images with any resolution. We hope our work may inspire more exploration and application of AR-based modeling across diverse modalities.
Abstract:Rapid advancements in multimodal large language models have enabled the creation of hyper-realistic images from textual descriptions. However, these advancements also raise significant concerns about unauthorized use, which hinders their broader distribution. Traditional watermarking methods often require complex integration or degrade image quality. To address these challenges, we introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB). TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models. This approach ensures that each user can directly apply a pre-configured set of parameters to the model without altering the original model parameters or compromising image quality. Additionally, noise and augmentation operations are embedded at the pixel level to further secure and stabilize watermarked images. Extensive experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
Abstract:Multimodal affective computing (MAC) has garnered increasing attention due to its broad applications in analyzing human behaviors and intentions, especially in text-dominated multimodal affective computing field. This survey presents the recent trends of multimodal affective computing from NLP perspective through four hot tasks: multimodal sentiment analysis, multimodal emotion recognition in conversation, multimodal aspect-based sentiment analysis and multimodal multi-label emotion recognition. The goal of this survey is to explore the current landscape of multimodal affective research, identify development trends, and highlight the similarities and differences across various tasks, offering a comprehensive report on the recent progress in multimodal affective computing from an NLP perspective. This survey covers the formalization of tasks, provides an overview of relevant works, describes benchmark datasets, and details the evaluation metrics for each task. Additionally, it briefly discusses research in multimodal affective computing involving facial expressions, acoustic signals, physiological signals, and emotion causes. Additionally, we discuss the technical approaches, challenges, and future directions in multimodal affective computing. To support further research, we released a repository that compiles related works in multimodal affective computing, providing detailed resources and references for the community.
Abstract:Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data. To address this issue, Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data. Although these methods offer some relief, they lack a reliable mechanism for domain shift correction, which can often be erratic in real-world applications. In response, we develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA. Adhering to the principle of few inputs, big gains, FS-TTA reduces blind exploration in unseen target domains. Furthermore, we propose a two-stage framework to tackle FS-TTA, including (i) fine-tuning the pre-trained source model with few-shot support set, along with using feature diversity augmentation module to avoid overfitting, (ii) implementing test time adaptation based on prototype memory bank guidance to produce high quality pseudo-label for model adaptation. Through extensive experiments on three cross-domain classification benchmarks, we demonstrate the superior performance and reliability of our FS-TTA and framework.
Abstract:Efficient inference in Large Language Models (LLMs) is impeded by the growing memory demands of key-value (KV) caching, especially for longer sequences. Traditional KV cache eviction strategies, which prioritize less critical KV-pairs based on attention scores, often degrade generation quality, leading to issues such as context loss or hallucinations. To address this, we introduce Dynamic Discriminative Operations (D2O), a novel method that utilizes two-level discriminative strategies to optimize KV cache size without fine-tuning, while preserving essential context. Initially, by observing varying densities of attention weights between shallow and deep layers, we use this insight to determine which layers should avoid excessive eviction to minimize information loss. Subsequently, for the eviction strategy in each layer, D2O innovatively incorporates a compensation mechanism that maintains a similarity threshold to re-discriminate the importance of previously discarded tokens, determining whether they should be recalled and merged with similar tokens. Our approach not only achieves significant memory savings and enhances inference throughput by more than 3x but also maintains high-quality long-text generation. Extensive experiments across various benchmarks and LLM architectures have demonstrated that D2O significantly enhances performance with a constrained KV cache budget.
Abstract:Recently, the strong latent Diffusion Probabilistic Model (DPM) has been applied to high-quality Text-to-Image (T2I) generation (e.g., Stable Diffusion), by injecting the encoded target text prompt into the gradually denoised diffusion image generator. Despite the success of DPM in practice, the mechanism behind it remains to be explored. To fill this blank, we begin by examining the intermediate statuses during the gradual denoising generation process in DPM. The empirical observations indicate, the shape of image is reconstructed after the first few denoising steps, and then the image is filled with details (e.g., texture). The phenomenon is because the low-frequency signal (shape relevant) of the noisy image is not corrupted until the final stage in the forward process (initial stage of generation) of adding noise in DPM. Inspired by the observations, we proceed to explore the influence of each token in the text prompt during the two stages. After a series of experiments of T2I generations conditioned on a set of text prompts. We conclude that in the earlier generation stage, the image is mostly decided by the special token [\texttt{EOS}] in the text prompt, and the information in the text prompt is already conveyed in this stage. After that, the diffusion model completes the details of generated images by information from themselves. Finally, we propose to apply this observation to accelerate the process of T2I generation by properly removing text guidance, which finally accelerates the sampling up to 25\%+.
Abstract:Parameter-efficient fine-tuning (PEFT) has emerged as a popular approach for adapting pre-trained Vision Transformer (ViT) models to downstream applications. While current PEFT methods achieve parameter efficiency, they overlook GPU memory and time efficiency during both fine-tuning and inference, due to the repeated computation of redundant tokens in the ViT architecture. This falls short of practical requirements for downstream task adaptation. In this paper, we propose \textbf{Sparse-Tuning}, a novel tuning paradigm that substantially enhances both fine-tuning and inference efficiency for pre-trained ViT models. Sparse-Tuning efficiently fine-tunes the pre-trained ViT by sparsely preserving the informative tokens and merging redundant ones, enabling the ViT to focus on the foreground while reducing computational costs on background regions in the images. To accurately distinguish informative tokens from uninformative ones, we introduce a tailored Dense Adapter, which establishes dense connections across different encoder layers in the ViT, thereby enhancing the representational capacity and quality of token sparsification. Empirical results on VTAB-1K, three complete image datasets, and two complete video datasets demonstrate that Sparse-Tuning reduces the GFLOPs to \textbf{62\%-70\%} of the original ViT-B while achieving state-of-the-art performance. Source code is available at \url{https://github.com/liuting20/Sparse-Tuning}.
Abstract:Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
Abstract:Large-scale pre-trained models have achieved remarkable success in various computer vision tasks. A standard approach to leverage these models is to fine-tune all model parameters for downstream tasks, which poses challenges in terms of computational and storage costs. Recently, inspired by Natural Language Processing (NLP), parameter-efficient transfer learning has been successfully applied to vision tasks. However, most existing techniques primarily focus on single-task adaptation, and despite limited research on multi-task adaptation, these methods often exhibit suboptimal training and inference efficiency. In this paper, we first propose an once-for-all Vision Multi-Task Adapter (VMT-Adapter), which strikes approximately O(1) training and inference efficiency w.r.t task number. Concretely, VMT-Adapter shares the knowledge from multiple tasks to enhance cross-task interaction while preserves task-specific knowledge via independent knowledge extraction modules. Notably, since task-specific modules require few parameters, VMT-Adapter can handle an arbitrary number of tasks with a negligible increase of trainable parameters. We also propose VMT-Adapter-Lite, which further reduces the trainable parameters by learning shared parameters between down- and up-projections. Extensive experiments on four dense scene understanding tasks demonstrate the superiority of VMT-Adapter(-Lite), achieving a 3.96%(1.34%) relative improvement compared to single-task full fine-tuning, while utilizing merely ~1% (0.36%) trainable parameters of the pre-trained model.
Abstract:Multi-Task Learning (MTL) is designed to train multiple correlated tasks simultaneously, thereby enhancing the performance of individual tasks. Typically, a multi-task network structure consists of a shared backbone and task-specific decoders. However, the complexity of the decoders increases with the number of tasks. To tackle this challenge, we integrate the decoder-free vision-language model CLIP, which exhibits robust zero-shot generalization capability. Recently, parameter-efficient transfer learning methods have been extensively explored with CLIP for adapting to downstream tasks, where prompt tuning showcases strong potential. Nevertheless, these methods solely fine-tune a single modality (text or visual), disrupting the modality structure of CLIP. In this paper, we first propose Multi-modal Alignment Prompt (MmAP) for CLIP, which aligns text and visual modalities during fine-tuning process. Building upon MmAP, we develop an innovative multi-task prompt learning framework. On the one hand, to maximize the complementarity of tasks with high similarity, we utilize a gradient-driven task grouping method that partitions tasks into several disjoint groups and assign a group-shared MmAP to each group. On the other hand, to preserve the unique characteristics of each task, we assign an task-specific MmAP to each task. Comprehensive experiments on two large multi-task learning datasets demonstrate that our method achieves significant performance improvements compared to full fine-tuning while only utilizing approximately 0.09% of trainable parameters.