Abstract:As large language models (LLMs) continue to grow, the cost of full-parameter fine-tuning has made parameter-efficient fine-tuning (PEFT) the default strategy for downstream adaptation. Constraints from inference latency in scalable serving and fine-tuning cost in edge or rapid-deployment settings make the choice of which layers to fine-tune unavoidable. Yet current practice typically applies PEFT uniformly across all layers, with limited understanding or leverage of layer selection. This paper develops a unified projected residual view of PEFT on top of a frozen base model. Under a local quadratic approximation, layerwise adaptation is governed by three quantities: (i) the projected residual norm (resnorm), which measures how much correctable bias a layer can capture; (ii) the activation energy, which determines feature conditioning; and (iii) layer coupling, which quantifies how strongly residuals interact across layers. We show that, for squared loss and linear adapters, the resnorm equals a normalized gradient norm, activation energy controls ill-conditioning and noise amplification, and weak coupling yields approximately additive layerwise contributions. Building on these insights, we introduce the Layer Card, a reusable diagnostic that summarizes residual signal strength, compute cost, and performance for each layer of a given model. With an identical model and LoRA configuration, Layer Card-guided placement refines the choice of adapted layers to flexibly prioritize different objectives, such as maximizing performance or reducing fine-tuning cost. Moreover, on Qwen3-8B, we show that selectively adapting a subset of layers can achieve performance close to full-layer LoRA while substantially reducing fine-tuning cost and the number of adapter-augmented layers during inference, offering a more cost-performance-aware alternative to full-layer insertion.
Abstract:Large Multimodal Models(LMMs) face notable challenges when encountering multimodal knowledge conflicts, particularly under retrieval-augmented generation(RAG) frameworks where the contextual information from external sources may contradict the model's internal parametric knowledge, leading to unreliable outputs. However, existing benchmarks fail to reflect such realistic conflict scenarios. Most focus solely on intra-memory conflicts, while context-memory and inter-context conflicts remain largely investigated. Furthermore, commonly used factual knowledge-based evaluations are often overlooked, and existing datasets lack a thorough investigation into conflict detection capabilities. To bridge this gap, we propose MMKC-Bench, a benchmark designed to evaluate factual knowledge conflicts in both context-memory and inter-context scenarios. MMKC-Bench encompasses three types of multimodal knowledge conflicts and includes 1,573 knowledge instances and 3,381 images across 23 broad types, collected through automated pipelines with human verification. We evaluate three representative series of LMMs on both model behavior analysis and conflict detection tasks. Our findings show that while current LMMs are capable of recognizing knowledge conflicts, they tend to favor internal parametric knowledge over external evidence. We hope MMKC-Bench will foster further research in multimodal knowledge conflict and enhance the development of multimodal RAG systems. The source code is available at https://github.com/MLLMKCBENCH/MLLMKC.
Abstract:Electronic Health Records (EHR) have become a valuable resource for a wide range of predictive tasks in healthcare. However, existing approaches have largely focused on inter-visit event predictions, overlooking the importance of intra-visit nowcasting, which provides prompt clinical insights during an ongoing patient visit. To address this gap, we introduce the task of laboratory measurement prediction within a hospital visit. We study the laboratory data that, however, remained underexplored in previous work. We propose TRACE, a Transformer-based model designed for clinical event nowcasting by encoding patient trajectories. TRACE effectively handles long sequences and captures temporal dependencies through a novel timestamp embedding that integrates decay properties and periodic patterns of data. Additionally, we introduce a smoothed mask for denoising, improving the robustness of the model. Experiments on two large-scale electronic health record datasets demonstrate that the proposed model significantly outperforms previous methods, highlighting its potential for improving patient care through more accurate laboratory measurement nowcasting. The code is available at https://github.com/Amehi/TRACE.