Abstract:Continual learning (CL) aims to empower machine learning models to learn continually from new data, while building upon previously acquired knowledge without forgetting. As machine learning models have evolved from small to large pre-trained architectures, and from supporting unimodal to multimodal data, multimodal continual learning (MMCL) methods have recently emerged. The primary challenge of MMCL is that it goes beyond a simple stacking of unimodal CL methods, as such straightforward approaches often yield unsatisfactory performance. In this work, we present the first comprehensive survey on MMCL. We provide essential background knowledge and MMCL settings, as well as a structured taxonomy of MMCL methods. We categorize existing MMCL methods into four categories, i.e., regularization-based, architecture-based, replay-based, and prompt-based methods, explaining their methodologies and highlighting their key innovations. Additionally, to prompt further research in this field, we summarize open MMCL datasets and benchmarks, and discuss several promising future directions for investigation and development. We have also created a GitHub repository for indexing relevant MMCL papers and open resources available at https://github.com/LucyDYu/Awesome-Multimodal-Continual-Learning.
Abstract:Searching on bipartite graphs serves as a fundamental task for various real-world applications, such as recommendation systems, database retrieval, and document querying. Conventional approaches rely on similarity matching in continuous Euclidean space of vectorized node embeddings. To handle intensive similarity computation efficiently, hashing techniques for graph-structured data have emerged as a prominent research direction. However, despite the retrieval efficiency in Hamming space, previous studies have encountered catastrophic performance decay. To address this challenge, we investigate the problem of hashing with Graph Convolutional Network for effective Top-N search. Our findings indicate the learning effectiveness of incorporating hashing techniques within the exploration of bipartite graph reception fields, as opposed to simply treating hashing as post-processing to output embeddings. To further enhance the model performance, we advance upon these findings and propose Bipartite Graph Contrastive Hashing (BGCH+). BGCH+ introduces a novel dual augmentation approach to both intermediate information and hash code outputs in the latent feature spaces, thereby producing more expressive and robust hash codes within a dual self-supervised learning paradigm. Comprehensive empirical analyses on six real-world benchmarks validate the effectiveness of our dual feature contrastive learning in boosting the performance of BGCH+ compared to existing approaches.
Abstract:Active learning seeks to achieve strong performance with fewer training samples. It does this by iteratively asking an oracle to label new selected samples in a human-in-the-loop manner. This technique has gained increasing popularity due to its broad applicability, yet its survey papers, especially for deep learning-based active learning (DAL), remain scarce. Therefore, we conduct an advanced and comprehensive survey on DAL. We first introduce reviewed paper collection and filtering. Second, we formally define the DAL task and summarize the most influential baselines and widely used datasets. Third, we systematically provide a taxonomy of DAL methods from five perspectives, including annotation types, query strategies, deep model architectures, learning paradigms, and training processes, and objectively analyze their strengths and weaknesses. Then, we comprehensively summarize main applications of DAL in Natural Language Processing (NLP), Computer Vision (CV), and Data Mining (DM), etc. Finally, we discuss challenges and perspectives after a detailed analysis of current studies. This work aims to serve as a useful and quick guide for researchers in overcoming difficulties in DAL. We hope that this survey will spur further progress in this burgeoning field.
Abstract:Node importance estimation problem has been studied conventionally with homogeneous network topology analysis. To deal with network heterogeneity, a few recent methods employ graph neural models to automatically learn diverse sources of information. However, the major concern revolves around that their full adaptive learning process may lead to insufficient information exploration, thereby formulating the problem as the isolated node value prediction with underperformance and less interpretability. In this work, we propose a novel learning framework: SKES. Different from previous automatic learning designs, SKES exploits heterogeneous structural knowledge to enrich the informativeness of node representations. Based on a sufficiently uninformative reference, SKES estimates the importance value for any input node, by quantifying its disparity against the reference. This establishes an interpretable node importance computation paradigm. Furthermore, SKES dives deep into the understanding that "nodes with similar characteristics are prone to have similar importance values" whilst guaranteeing that such informativeness disparity between any different nodes is orderly reflected by the embedding distance of their associated latent features. Extensive experiments on three widely-evaluated benchmarks demonstrate the performance superiority of SKES over several recent competing methods.
Abstract:Existing unsupervised deep product quantization methods primarily aim for the increased similarity between different views of the identical image, whereas the delicate multi-level semantic similarities preserved between images are overlooked. Moreover, these methods predominantly focus on the Euclidean space for computational convenience, compromising their ability to map the multi-level semantic relationships between images effectively. To mitigate these shortcomings, we propose a novel unsupervised product quantization method dubbed \textbf{Hi}erarchical \textbf{H}yperbolic \textbf{P}roduct \textbf{Q}uantization (HiHPQ), which learns quantized representations by incorporating hierarchical semantic similarity within hyperbolic geometry. Specifically, we propose a hyperbolic product quantizer, where the hyperbolic codebook attention mechanism and the quantized contrastive learning on the hyperbolic product manifold are introduced to expedite quantization. Furthermore, we propose a hierarchical semantics learning module, designed to enhance the distinction between similar and non-matching images for a query by utilizing the extracted hierarchical semantics as an additional training supervision. Experiments on benchmarks show that our proposed method outperforms state-of-the-art baselines.
Abstract:The non-Euclidean geometry of hyperbolic spaces has recently garnered considerable attention in the realm of representation learning. Current endeavors in hyperbolic representation largely presuppose that the underlying hierarchies can be automatically inferred and preserved through the adaptive optimization process. This assumption, however, is questionable and requires further validation. In this work, we first introduce a position-tracking mechanism to scrutinize existing prevalent \hlms, revealing that the learned representations are sub-optimal and unsatisfactory. To address this, we propose a simple yet effective method, hyperbolic informed embedding (HIE), by incorporating cost-free hierarchical information deduced from the hyperbolic distance of the node to origin (i.e., induced hyperbolic norm) to advance existing \hlms. The proposed method HIE is both task-agnostic and model-agnostic, enabling its seamless integration with a broad spectrum of models and tasks. Extensive experiments across various models and different tasks demonstrate the versatility and adaptability of the proposed method. Remarkably, our method achieves a remarkable improvement of up to 21.4\% compared to the competing baselines.
Abstract:Maximizing the user-item engagement based on vectorized embeddings is a standard procedure of recent recommender models. Despite the superior performance for item recommendations, these methods however implicitly deprioritize the modeling of user-wise similarity in the embedding space; consequently, identifying similar users is underperforming, and additional processing schemes are usually required otherwise. To avoid thorough model re-training, we propose WSFE, a model-agnostic and training-free representation encoder, to be flexibly employed on the fly for effective user segmentation. Underpinned by the optimal transport theory, the encoded representations from WSFE present a matched user-wise similarity/distance measurement between the realistic and embedding space. We incorporate WSFE into six state-of-the-art recommender models and conduct extensive experiments on six real-world datasets. The empirical analyses well demonstrate the superiority and generality of WSFE to fuel multiple downstream tasks with diverse underlying targets in recommendation.
Abstract:Searching on bipartite graphs is basal and versatile to many real-world Web applications, e.g., online recommendation, database retrieval, and query-document searching. Given a query node, the conventional approaches rely on the similarity matching with the vectorized node embeddings in the continuous Euclidean space. To efficiently manage intensive similarity computation, developing hashing techniques for graph structured data has recently become an emerging research direction. Despite the retrieval efficiency in Hamming space, prior work is however confronted with catastrophic performance decay. In this work, we investigate the problem of hashing with Graph Convolutional Network on bipartite graphs for effective Top-N search. We propose an end-to-end Bipartite Graph Convolutional Hashing approach, namely BGCH, which consists of three novel and effective modules: (1) adaptive graph convolutional hashing, (2) latent feature dispersion, and (3) Fourier serialized gradient estimation. Specifically, the former two modules achieve the substantial retention of the structural information against the inevitable information loss in hash encoding; the last module develops Fourier Series decomposition to the hashing function in the frequency domain mainly for more accurate gradient estimation. The extensive experiments on six real-world datasets not only show the performance superiority over the competing hashing-based counterparts, but also demonstrate the effectiveness of all proposed model components contained therein.
Abstract:Incorporating knowledge graphs (KGs) as side information in recommendation has recently attracted considerable attention. Despite the success in general recommendation scenarios, prior methods may fall short of performance satisfaction for the cold-start problem in which users are associated with very limited interactive information. Since the conventional methods rely on exploring the interaction topology, they may however fail to capture sufficient information in cold-start scenarios. To mitigate the problem, we propose a novel Knowledge-aware Neural Networks with Personalized Feature Referencing Mechanism, namely KPER. Different from most prior methods which simply enrich the targets' semantics from KGs, e.g., product attributes, KPER utilizes the KGs as a "semantic bridge" to extract feature references for cold-start users or items. Specifically, given cold-start targets, KPER first probes semantically relevant but not necessarily structurally close users or items as adaptive seeds for referencing features. Then a Gated Information Aggregation module is introduced to learn the combinatorial latent features for cold-start users and items. Our extensive experiments over four real-world datasets show that, KPER consistently outperforms all competing methods in cold-start scenarios, whilst maintaining superiority in general scenarios without compromising overall performance, e.g., by achieving 0.81%-16.08% and 1.01%-14.49% performance improvement across all datasets in Top-10 recommendation.
Abstract:Learning vectorized embeddings is at the core of various recommender systems for user-item matching. To perform efficient online inference, representation quantization, aiming to embed the latent features by a compact sequence of discrete numbers, recently shows the promising potentiality in optimizing both memory and computation overheads. However, existing work merely focuses on numerical quantization whilst ignoring the concomitant information loss issue, which, consequently, leads to conspicuous performance degradation. In this paper, we propose a novel quantization framework to learn Binarized Graph Representations for Top-K Recommendation (BiGeaR). BiGeaR introduces multi-faceted quantization reinforcement at the pre-, mid-, and post-stage of binarized representation learning, which substantially retains the representation informativeness against embedding binarization. In addition to saving the memory footprint, BiGeaR further develops solid online inference acceleration with bitwise operations, providing alternative flexibility for the realistic deployment. The empirical results over five large real-world benchmarks show that BiGeaR achieves about 22%~40% performance improvement over the state-of-the-art quantization-based recommender system, and recovers about 95%~102% of the performance capability of the best full-precision counterpart with over 8x time and space reduction.