Abstract:Aligning Large Language Models (LLMs) traditionally relies on costly training and human preference annotations. Self-alignment seeks to reduce these expenses by enabling models to align themselves. To further lower costs and achieve alignment without any expensive tuning or annotations, we introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (DRPO). Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions, all without additional training or human intervention. The core of DRPO is a dynamic rewarding mechanism, which identifies and rectifies model-specific alignment weaknesses, allowing LLMs to adapt efficiently to diverse alignment challenges. Empirical evaluations on eight recent LLMs, both open- and closed-sourced, demonstrate that DRPO significantly enhances alignment performance, with base models outperforming their SFT/RLHF-tuned counterparts. Moreover, the prompts automatically optimized by DRPO surpass those curated by human experts, further validating the effectiveness of our approach. Our findings highlight the great potential of current LLMs to achieve adaptive self-alignment through inference-time optimization, complementing tuning-based alignment methods.
Abstract:Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs), which are essential for medical practice and drug development. Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments. In this study, inspired by the success of neural architecture search (NAS), we propose a method to search for data-specific components within subgraph-based frameworks. Specifically, we introduce extensive subgraph selection and encoding spaces that account for the diverse contexts of drug interactions in DDI prediction. To address the challenge of large search spaces and high sampling costs, we design a relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations. This approach allows for robust exploration of the search space. Extensive experiments demonstrate the effectiveness and superiority of the proposed method, with the discovered subgraphs and encoding functions highlighting the model's adaptability.
Abstract:Analysis of the genome sequence of Perccottus glenii, the only fish known to possess freeze tolerance, holds significant importance for understanding how organisms adapt to extreme environments, Traditional biological analysis methods are time-consuming and have limited accuracy, To address these issues, we will employ machine learning techniques to analyze the gene sequences of Perccottus glenii, with Neodontobutis hainanens as a comparative group, Firstly, we have proposed five gene sequence vectorization methods and a method for handling ultra-long gene sequences, We conducted a comparative study on the three vectorization methods: ordinal encoding, One-Hot encoding, and K-mer encoding, to identify the optimal encoding method, Secondly, we constructed four classification models: Random Forest, LightGBM, XGBoost, and Decision Tree, The dataset used by these classification models was extracted from the National Center for Biotechnology Information database, and we vectorized the sequence matrices using the optimal encoding method, K-mer, The Random Forest model, which is the optimal model, achieved a classification accuracy of up to 99, 98 , Lastly, we utilized SHAP values to conduct an interpretable analysis of the optimal classification model, Through ten-fold cross-validation and the AUC metric, we identified the top 10 features that contribute the most to the model's classification accuracy, This demonstrates that machine learning methods can effectively replace traditional manual analysis in identifying genes associated with the freeze tolerance phenotype in Perccottus glenii.
Abstract:Shadow detection is crucial for accurate scene understanding in computer vision, yet it is challenged by the diverse appearances of shadows caused by variations in illumination, object geometry, and scene context. Deep learning models often struggle to generalize to real-world images due to the limited size and diversity of training datasets. To address this, we introduce TICA, a novel framework that leverages light-intensity information during test-time adaptation to enhance shadow detection accuracy. TICA exploits the inherent inconsistencies in light intensity across shadow regions to guide the model toward a more consistent prediction. A basic encoder-decoder model is initially trained on a labeled dataset for shadow detection. Then, during the testing phase, the network is adjusted for each test sample by enforcing consistent intensity predictions between two augmented input image versions. This consistency training specifically targets both foreground and background intersection regions to identify shadow regions within images accurately for robust adaptation. Extensive evaluations on the ISTD and SBU shadow detection datasets reveal that TICA significantly demonstrates that TICA outperforms existing state-of-the-art methods, achieving superior results in balanced error rate (BER).
Abstract:In recent years, 3D vision has become a crucial field within computer vision, powering a wide range of applications such as autonomous driving, robotics, augmented reality (AR), and medical imaging. This field relies on the accurate perception, understanding, and reconstruction of 3D scenes from 2D data sources like images and videos. Diffusion models, originally designed for 2D generative tasks, offer the potential for more flexible, probabilistic approaches that can better capture the variability and uncertainty present in real-world 3D data. However, traditional methods often struggle with efficiency and scalability. In this paper, we review the state-of-the-art approaches that leverage diffusion models for 3D visual tasks, including but not limited to 3D object generation, shape completion, point cloud reconstruction, and scene understanding. We provide an in-depth discussion of the underlying mathematical principles of diffusion models, outlining their forward and reverse processes, as well as the various architectural advancements that enable these models to work with 3D datasets. We also discuss the key challenges in applying diffusion models to 3D vision, such as handling occlusions and varying point densities, and the computational demands of high-dimensional data. Finally, we discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining for better generalization across 3D tasks. This paper serves as a foundation for future exploration and development in this rapidly evolving field.
Abstract:Precise and flexible image editing remains a fundamental challenge in computer vision. Based on the modified areas, most editing methods can be divided into two main types: global editing and local editing. In this paper, we choose the two most common editing approaches (ie text-based editing and drag-based editing) and analyze their drawbacks. Specifically, text-based methods often fail to describe the desired modifications precisely, while drag-based methods suffer from ambiguity. To address these issues, we proposed \textbf{CLIPDrag}, a novel image editing method that is the first to combine text and drag signals for precise and ambiguity-free manipulations on diffusion models. To fully leverage these two signals, we treat text signals as global guidance and drag points as local information. Then we introduce a novel global-local motion supervision method to integrate text signals into existing drag-based methods by adapting a pre-trained language-vision model like CLIP. Furthermore, we also address the problem of slow convergence in CLIPDrag by presenting a fast point-tracking method that enforces drag points moving toward correct directions. Extensive experiments demonstrate that CLIPDrag outperforms existing single drag-based methods or text-based methods.
Abstract:Customized Image Generation, generating customized images with user-specified concepts, has raised significant attention due to its creativity and novelty. With impressive progress achieved in subject customization, some pioneer works further explored the customization of action and interaction beyond entity (i.e., human, animal, and object) appearance. However, these approaches only focus on basic actions and interactions between two entities, and their effects are limited by insufficient ''exactly same'' reference images. To extend customized image generation to more complex scenes for general real-world applications, we propose a new task: event-customized image generation. Given a single reference image, we define the ''event'' as all specific actions, poses, relations, or interactions between different entities in the scene. This task aims at accurately capturing the complex event and generating customized images with various target entities. To solve this task, we proposed a novel training-free event customization method: FreeEvent. Specifically, FreeEvent introduces two extra paths alongside the general diffusion denoising process: 1) Entity switching path: it applies cross-attention guidance and regulation for target entity generation. 2) Event transferring path: it injects the spatial feature and self-attention maps from the reference image to the target image for event generation. To further facilitate this new task, we collected two evaluation benchmarks: SWiG-Event and Real-Event. Extensive experiments and ablations have demonstrated the effectiveness of FreeEvent.
Abstract:Diffusion models have demonstrated their capabilities in modeling trajectories of multi-tasks. However, existing multi-task planners or policies typically rely on task-specific demonstrations via multi-task imitation, or require task-specific reward labels to facilitate policy optimization via Reinforcement Learning (RL). To address these challenges, we aim to develop a versatile diffusion planner that can leverage large-scale inferior data that contains task-agnostic sub-optimal trajectories, with the ability to fast adapt to specific tasks. In this paper, we propose \textbf{SODP}, a two-stage framework that leverages \textbf{S}ub-\textbf{O}ptimal data to learn a \textbf{D}iffusion \textbf{P}lanner, which is generalizable for various downstream tasks. Specifically, in the pre-training stage, we train a foundation diffusion planner that extracts general planning capabilities by modeling the versatile distribution of multi-task trajectories, which can be sub-optimal and has wide data coverage. Then for downstream tasks, we adopt RL-based fine-tuning with task-specific rewards to fast refine the diffusion planner, which aims to generate action sequences with higher task-specific returns. Experimental results from multi-task domains including Meta-World and Adroit demonstrate that SODP outperforms state-of-the-art methods with only a small amount of data for reward-guided fine-tuning.
Abstract:To ease the difficulty of acquiring annotation labels in 3D data, a common method is using unsupervised and open-vocabulary semantic segmentation, which leverage 2D CLIP semantic knowledge. In this paper, unlike previous research that ignores the ``noise'' raised during feature projection from 2D to 3D, we propose a novel distillation learning framework named CUS3D. In our approach, an object-level denosing projection module is designed to screen out the ``noise'' and ensure more accurate 3D feature. Based on the obtained features, a multimodal distillation learning module is designed to align the 3D feature with CLIP semantic feature space with object-centered constrains to achieve advanced unsupervised semantic segmentation. We conduct comprehensive experiments in both unsupervised and open-vocabulary segmentation, and the results consistently showcase the superiority of our model in achieving advanced unsupervised segmentation results and its effectiveness in open-vocabulary segmentation.
Abstract:The field of computer-aided synthesis planning (CASP) has seen rapid advancements in recent years, achieving significant progress across various algorithmic benchmarks. However, chemists often encounter numerous infeasible reactions when using CASP in practice. This article delves into common errors associated with CASP and introduces a product prediction model aimed at enhancing the accuracy of single-step models. While the product prediction model reduces the number of single-step reactions, it integrates multiple single-step models to maintain the overall reaction count and increase reaction diversity. Based on manual analysis and large-scale testing, the product prediction model, combined with the multi-model ensemble approach, has been proven to offer higher feasibility and greater diversity.