Abstract:Masked autoencoder has been widely explored in point cloud self-supervised learning, whereby the point cloud is generally divided into visible and masked parts. These methods typically include an encoder accepting visible patches (normalized) and corresponding patch centers (position) as input, with the decoder accepting the output of the encoder and the centers (position) of the masked parts to reconstruct each point in the masked patches. Then, the pre-trained encoders are used for downstream tasks. In this paper, we show a motivating empirical result that when directly feeding the centers of masked patches to the decoder without information from the encoder, it still reconstructs well. In other words, the centers of patches are important and the reconstruction objective does not necessarily rely on representations of the encoder, thus preventing the encoder from learning semantic representations. Based on this key observation, we propose a simple yet effective method, i.e., learning to Predict Centers for Point Masked AutoEncoders (PCP-MAE) which guides the model to learn to predict the significant centers and use the predicted centers to replace the directly provided centers. Specifically, we propose a Predicting Center Module (PCM) that shares parameters with the original encoder with extra cross-attention to predict centers. Our method is of high pre-training efficiency compared to other alternatives and achieves great improvement over Point-MAE, particularly outperforming it by 5.50%, 6.03%, and 5.17% on three variants of ScanObjectNN. The code will be made publicly available.
Abstract:Physics-informed deep learning has been developed as a novel paradigm for learning physical dynamics recently. While general physics-informed deep learning methods have shown early promise in learning fluid dynamics, they are difficult to generalize in arbitrary time instants in real-world scenario, where the fluid motion can be considered as a time-variant trajectory involved large-scale particles. Inspired by the advantage of diffusion model in learning the distribution of data, we first propose Pi-fusion, a physics-informed diffusion model for predicting the temporal evolution of velocity and pressure field in fluid dynamics. Physics-informed guidance sampling is proposed in the inference procedure of Pi-fusion to improve the accuracy and interpretability of learning fluid dynamics. Furthermore, we introduce a training strategy based on reciprocal learning to learn the quasiperiodical pattern of fluid motion and thus improve the generalizability of the model. The proposed approach are then evaluated on both synthetic and real-world dataset, by comparing it with state-of-the-art physics-informed deep learning methods. Experimental results show that the proposed approach significantly outperforms existing methods for predicting temporal evolution of velocity and pressure field, confirming its strong generalization by drawing probabilistic inference of forward process and physics-informed guidance sampling. The proposed Pi-fusion can also be generalized in learning other physical dynamics governed by partial differential equations.
Abstract:Batch Normalization (BN) has become an essential technique in contemporary neural network design, enhancing training stability. Specifically, BN employs centering and scaling operations to standardize features along the batch dimension and uses an affine transformation to recover features. Although standard BN has shown its capability to improve deep neural network training and convergence, it still exhibits inherent limitations in certain cases. Most existing techniques that enhance BN consider a single or a few aspects of BN. In this paper, we first identify problems with BN from a feature perspective and explore that feature condensation exists in the learning when employing BN, which negatively affects testing performance. To tackle this problem, we propose a two-stage unified framework called Unified Batch Normalization (UBN). In the first stage, we utilize a simple feature condensation threshold to alleviate the feature condensation, which hinders inappropriate statistic updates in normalization. In the second stage, we unify various normalization variants to boost each component of BN. Our experimental results reveal that UBN significantly enhances performance across different visual backbones and notably expedites network training convergence, particularly in early training stages. Notably, our method improved about 3% in top-1 accuracy on ImageNet classification with large batch sizes, showing the effectiveness of our approach in real-world scenarios.
Abstract:Because hyperspectral remote sensing images contain a lot of redundant information and the data structure is highly non-linear, leading to low classification accuracy of traditional machine learning methods. The latest research shows that hyperspectral image classification based on deep convolutional neural network has high accuracy. However, when a small amount of data is used for training, the classification accuracy of deep learning methods is greatly reduced. In order to solve the problem of low classification accuracy of existing algorithms on small samples of hyperspectral images, a multi-scale residual network is proposed. The multi-scale extraction and fusion of spatial and spectral features is realized by adding a branch structure into the residual block and using convolution kernels of different sizes in the branch. The spatial and spectral information contained in hyperspectral images are fully utilized to improve the classification accuracy. In addition, in order to improve the speed and prevent overfitting, the model uses dynamic learning rate, BN and Dropout strategies. The experimental results show that the overall classification accuracy of this method is 99.07% and 99.96% respectively in the data set of Indian Pines and Pavia University, which is better than other algorithms.