Abstract:Aligning Large Language Models (LLMs) traditionally relies on costly training and human preference annotations. Self-alignment seeks to reduce these expenses by enabling models to align themselves. To further lower costs and achieve alignment without any expensive tuning or annotations, we introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (DRPO). Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions, all without additional training or human intervention. The core of DRPO is a dynamic rewarding mechanism, which identifies and rectifies model-specific alignment weaknesses, allowing LLMs to adapt efficiently to diverse alignment challenges. Empirical evaluations on eight recent LLMs, both open- and closed-sourced, demonstrate that DRPO significantly enhances alignment performance, with base models outperforming their SFT/RLHF-tuned counterparts. Moreover, the prompts automatically optimized by DRPO surpass those curated by human experts, further validating the effectiveness of our approach. Our findings highlight the great potential of current LLMs to achieve adaptive self-alignment through inference-time optimization, complementing tuning-based alignment methods.
Abstract:Rich temporal information and variations in viewpoints make video data an attractive choice for learning image representations using unsupervised contrastive learning (UCL) techniques. State-of-the-art (SOTA) contrastive learning techniques consider frames within a video as positives in the embedding space, whereas the frames from other videos are considered negatives. We observe that unlike multiple views of an object in natural scene videos, an Ultrasound (US) video captures different 2D slices of an organ. Hence, there is almost no similarity between the temporally distant frames of even the same US video. In this paper we propose to instead utilize such frames as hard negatives. We advocate mining both intra-video and cross-video negatives in a hardness-sensitive negative mining curriculum in a UCL framework to learn rich image representations. We deploy our framework to learn the representations of Gallbladder (GB) malignancy from US videos. We also construct the first large-scale US video dataset containing 64 videos and 15,800 frames for learning GB representations. We show that the standard ResNet50 backbone trained with our framework improves the accuracy of models pretrained with SOTA UCL techniques as well as supervised pretrained models on ImageNet for the GB malignancy detection task by 2-6%. We further validate the generalizability of our method on a publicly available lung US image dataset of COVID-19 pathologies and show an improvement of 1.5% compared to SOTA. Source code, dataset, and models are available at https://gbc-iitd.github.io/usucl.