Abstract:We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code and model will be available at https://github.com/sbasu276/RadFormer
Abstract:Rich temporal information and variations in viewpoints make video data an attractive choice for learning image representations using unsupervised contrastive learning (UCL) techniques. State-of-the-art (SOTA) contrastive learning techniques consider frames within a video as positives in the embedding space, whereas the frames from other videos are considered negatives. We observe that unlike multiple views of an object in natural scene videos, an Ultrasound (US) video captures different 2D slices of an organ. Hence, there is almost no similarity between the temporally distant frames of even the same US video. In this paper we propose to instead utilize such frames as hard negatives. We advocate mining both intra-video and cross-video negatives in a hardness-sensitive negative mining curriculum in a UCL framework to learn rich image representations. We deploy our framework to learn the representations of Gallbladder (GB) malignancy from US videos. We also construct the first large-scale US video dataset containing 64 videos and 15,800 frames for learning GB representations. We show that the standard ResNet50 backbone trained with our framework improves the accuracy of models pretrained with SOTA UCL techniques as well as supervised pretrained models on ImageNet for the GB malignancy detection task by 2-6%. We further validate the generalizability of our method on a publicly available lung US image dataset of COVID-19 pathologies and show an improvement of 1.5% compared to SOTA. Source code, dataset, and models are available at https://gbc-iitd.github.io/usucl.
Abstract:We explore the potential of CNN-based models for gallbladder cancer (GBC) detection from ultrasound (USG) images as no prior study is known. USG is the most common diagnostic modality for GB diseases due to its low cost and accessibility. However, USG images are challenging to analyze due to low image quality, noise, and varying viewpoints due to the handheld nature of the sensor. Our exhaustive study of state-of-the-art (SOTA) image classification techniques for the problem reveals that they often fail to learn the salient GB region due to the presence of shadows in the USG images. SOTA object detection techniques also achieve low accuracy because of spurious textures due to noise or adjacent organs. We propose GBCNet to tackle the challenges in our problem. GBCNet first extracts the regions of interest (ROIs) by detecting the GB (and not the cancer), and then uses a new multi-scale, second-order pooling architecture specializing in classifying GBC. To effectively handle spurious textures, we propose a curriculum inspired by human visual acuity, which reduces the texture biases in GBCNet. Experimental results demonstrate that GBCNet significantly outperforms SOTA CNN models, as well as the expert radiologists. Our technical innovations are generic to other USG image analysis tasks as well. Hence, as a validation, we also show the efficacy of GBCNet in detecting breast cancer from USG images. Project page with source code, trained models, and data is available at https://gbc-iitd.github.io/gbcnet