Abstract:Optimal control problems (OCPs) involve finding a control function for a dynamical system such that a cost functional is optimized. It is central to physical systems in both academia and industry. In this paper, we propose a novel instance-solution control operator perspective, which solves OCPs in a one-shot manner without direct dependence on the explicit expression of dynamics or iterative optimization processes. The control operator is implemented by a new neural operator architecture named Neural Adaptive Spectral Method (NASM), a generalization of classical spectral methods. We theoretically validate the perspective and architecture by presenting the approximation error bounds of NASM for the control operator. Experiments on synthetic environments and a real-world dataset verify the effectiveness and efficiency of our approach, including substantial speedup in running time, and high-quality in- and out-of-distribution generalization.
Abstract:Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.
Abstract:For end-to-end autonomous driving (E2E-AD), the evaluation system remains an open problem. Existing closed-loop evaluation protocols usually rely on simulators like CARLA being less realistic; while NAVSIM using real-world vision data, yet is limited to fixed planning trajectories in short horizon and assumes other agents are not reactive. We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation. Unlike existing video generative models for AD, the proposed designs are tailored for interactive simulation, where sensor rendering and behavior rollout are decoupled by applying a separate behavioral controller to simulate the reactions of surrounding agents. As a result, the renderer could focus on image fidelity, control adherence, and spatial-temporal coherence. For temporal consistency, due to the step-wise interaction nature of simulation, we design a noise modulating temporal encoder with Gaussian blurring to encourage long-horizon autoregressive rollout of image sequences without deteriorating distribution shifts. For spatial consistency, a retrieval mechanism, which takes the spatially nearest images as references, is introduced to to ensure scene-level rendering fidelity during the generation process. The spatial relations between target and reference are explicitly modeled with 3D relative position encodings and the potential over-reliance of reference images is mitigated with hierarchical sampling and classifier-free guidance. We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance. We further integrate Bench2Drive-R into nuPlan and evaluate the generative qualities with closed-loop simulation results. We will open source our code.
Abstract:In recent years, aerial object detection has been increasingly pivotal in various earth observation applications. However, current algorithms are limited to detecting a set of pre-defined object categories, demanding sufficient annotated training samples, and fail to detect novel object categories. In this paper, we put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD), which can detect objects beyond training categories without costly collecting new labeled data. We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario, where objects often exhibit weak appearance features and arbitrary orientations. Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects. Additionally, the RemoteCLIP model is adopted as an omniscient teacher, which provides rich knowledge to enhance classification capabilities for novel categories. A dynamic label queue is devised to maintain high-quality pseudo-labels during training. By doing so, the proposed CastDet boosts not only novel object proposals but also classification. Furthermore, we extend our approach from horizontal OVAD to oriented OVAD with tailored algorithm designs to effectively manage bounding box representation and pseudo-label generation. Extensive experiments for both tasks on multiple existing aerial object detection datasets demonstrate the effectiveness of our approach. The code is available at https://github.com/lizzy8587/CastDet.
Abstract:This study exposes the safety vulnerabilities of Large Language Models (LLMs) in multi-turn interactions, where malicious users can obscure harmful intents across several queries. We introduce ActorAttack, a novel multi-turn attack method inspired by actor-network theory, which models a network of semantically linked actors as attack clues to generate diverse and effective attack paths toward harmful targets. ActorAttack addresses two main challenges in multi-turn attacks: (1) concealing harmful intents by creating an innocuous conversation topic about the actor, and (2) uncovering diverse attack paths towards the same harmful target by leveraging LLMs' knowledge to specify the correlated actors as various attack clues. In this way, ActorAttack outperforms existing single-turn and multi-turn attack methods across advanced aligned LLMs, even for GPT-o1. We will publish a dataset called SafeMTData, which includes multi-turn adversarial prompts and safety alignment data, generated by ActorAttack. We demonstrate that models safety-tuned using our safety dataset are more robust to multi-turn attacks. Code is available at https://github.com/renqibing/ActorAttack.
Abstract:Sharpness-Aware Minimization (SAM) has substantially improved the generalization of neural networks under various settings. Despite the success, its effectiveness remains poorly understood. In this work, we discover an intriguing phenomenon in the training dynamics of SAM, shedding lights on understanding its implicit bias towards flatter minima over Stochastic Gradient Descent (SGD). Specifically, we find that SAM efficiently selects flatter minima late in training. Remarkably, even a few epochs of SAM applied at the end of training yield nearly the same generalization and solution sharpness as full SAM training. Subsequently, we delve deeper into the underlying mechanism behind this phenomenon. Theoretically, we identify two phases in the learning dynamics after applying SAM late in training: i) SAM first escapes the minimum found by SGD exponentially fast; and ii) then rapidly converges to a flatter minimum within the same valley. Furthermore, we empirically investigate the role of SAM during the early training phase. We conjecture that the optimization method chosen in the late phase is more crucial in shaping the final solution's properties. Based on this viewpoint, we extend our findings from SAM to Adversarial Training.
Abstract:Diffusion models have recently achieved great success in the synthesis of high-quality images and videos. However, the existing denoising techniques in diffusion models are commonly based on step-by-step noise predictions, which suffers from high computation cost, resulting in a prohibitive latency for interactive applications. In this paper, we propose AdaptiveDiffusion to relieve this bottleneck by adaptively reducing the noise prediction steps during the denoising process. Our method considers the potential of skipping as many noise prediction steps as possible while keeping the final denoised results identical to the original full-step ones. Specifically, the skipping strategy is guided by the third-order latent difference that indicates the stability between timesteps during the denoising process, which benefits the reusing of previous noise prediction results. Extensive experiments on image and video diffusion models demonstrate that our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 2~5x speedup without quality degradation.
Abstract:Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes dataset demonstrate the superior planning performance and great efficiency of DiFSD, which significantly reduces the average L2 error by \textbf{66\%} and collision rate by \textbf{77\%} than UniAD while achieves \textbf{8.2$\times$} faster running efficiency.
Abstract:Learning representations on large graphs is a long-standing challenge due to the inter-dependence nature. Transformers recently have shown promising performance on small graphs thanks to its global attention for capturing all-pair interactions beyond observed structures. Existing approaches tend to inherit the spirit of Transformers in language and vision tasks, and embrace complicated architectures by stacking deep attention-based propagation layers. In this paper, we attempt to evaluate the necessity of adopting multi-layer attentions in Transformers on graphs, which considerably restricts the efficiency. Specifically, we analyze a generic hybrid propagation layer, comprised of all-pair attention and graph-based propagation, and show that multi-layer propagation can be reduced to one-layer propagation, with the same capability for representation learning. It suggests a new technical path for building powerful and efficient Transformers on graphs, particularly through simplifying model architectures without sacrificing expressiveness. As exemplified by this work, we propose a Simplified Single-layer Graph Transformers (SGFormer), whose main component is a single-layer global attention that scales linearly w.r.t. graph sizes and requires none of any approximation for accommodating all-pair interactions. Empirically, SGFormer successfully scales to the web-scale graph ogbn-papers100M, yielding orders-of-magnitude inference acceleration over peer Transformers on medium-sized graphs, and demonstrates competitiveness with limited labeled data.
Abstract:Despite significant progress in robotics and embodied AI in recent years, deploying robots for long-horizon tasks remains a great challenge. Majority of prior arts adhere to an open-loop philosophy and lack real-time feedback, leading to error accumulation and undesirable robustness. A handful of approaches have endeavored to establish feedback mechanisms leveraging pixel-level differences or pre-trained visual representations, yet their efficacy and adaptability have been found to be constrained. Inspired by classic closed-loop control systems, we propose CLOVER, a closed-loop visuomotor control framework that incorporates feedback mechanisms to improve adaptive robotic control. CLOVER consists of a text-conditioned video diffusion model for generating visual plans as reference inputs, a measurable embedding space for accurate error quantification, and a feedback-driven controller that refines actions from feedback and initiates replans as needed. Our framework exhibits notable advancement in real-world robotic tasks and achieves state-of-the-art on CALVIN benchmark, improving by 8% over previous open-loop counterparts. Code and checkpoints are maintained at https://github.com/OpenDriveLab/CLOVER.