Abstract:Optimal control problems (OCPs) involve finding a control function for a dynamical system such that a cost functional is optimized. It is central to physical systems in both academia and industry. In this paper, we propose a novel instance-solution control operator perspective, which solves OCPs in a one-shot manner without direct dependence on the explicit expression of dynamics or iterative optimization processes. The control operator is implemented by a new neural operator architecture named Neural Adaptive Spectral Method (NASM), a generalization of classical spectral methods. We theoretically validate the perspective and architecture by presenting the approximation error bounds of NASM for the control operator. Experiments on synthetic environments and a real-world dataset verify the effectiveness and efficiency of our approach, including substantial speedup in running time, and high-quality in- and out-of-distribution generalization.
Abstract:May-Thurner Syndrome (MTS), also known as iliac vein compression syndrome or Cockett's syndrome, is a condition potentially impacting over 20 percent of the population, leading to an increased risk of iliofemoral deep venous thrombosis. In this paper, we present a 3D-based deep learning approach called MTS-Net for diagnosing May-Thurner Syndrome using CT scans. To effectively capture the spatial-temporal relationship among CT scans and emulate the clinical process of diagnosing MTS, we propose a novel attention module called the dual-enhanced positional multi-head self-attention (DEP-MHSA). The proposed DEP-MHSA reconsiders the role of positional embedding and incorporates a dual-enhanced positional embedding in both attention weights and residual connections. Further, we establish a new dataset, termed MTS-CT, consisting of 747 subjects. Experimental results demonstrate that our proposed approach achieves state-of-the-art MTS diagnosis results, and our self-attention design facilitates the spatial-temporal modeling. We believe that our DEP-MHSA is more suitable to handle CT image sequence modeling and the proposed dataset enables future research on MTS diagnosis. We make our code and dataset publicly available at: https://github.com/Nutingnon/MTS_dep_mhsa.
Abstract:Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.